จำนวนเต็ม อนุกรมของจำนวนธรรมชาติ

พูดง่ายๆ ก็คือผักที่ปรุงในน้ำตามสูตรพิเศษ ฉันจะพิจารณาองค์ประกอบเริ่มต้นสองอย่าง (สลัดผักและน้ำ) และผลลัพธ์ที่ได้คือ Borscht ในเชิงเรขาคณิต อาจมองว่าเป็นรูปสี่เหลี่ยมผืนผ้า โดยด้านหนึ่งเป็นตัวแทนของผักกาดหอม และอีกด้านเป็นตัวแทนของน้ำ ผลรวมของทั้งสองด้านนี้จะบ่งบอกถึง Borscht เส้นทแยงมุมและพื้นที่ของสี่เหลี่ยม "บอร์ช" ดังกล่าวนั้นล้วนๆ แนวคิดทางคณิตศาสตร์และไม่เคยใช้ในสูตร Borscht


ผักกาดหอมและน้ำกลายเป็น Borscht จากมุมมองทางคณิตศาสตร์ได้อย่างไร ผลรวมของส่วนของเส้นตรงสองเส้นจะกลายเป็นตรีโกณมิติได้อย่างไร เพื่อให้เข้าใจสิ่งนี้ เราจำเป็นต้องมีฟังก์ชันเชิงมุมเชิงเส้น


คุณจะไม่พบอะไรเกี่ยวกับฟังก์ชันเชิงมุมเชิงเส้นในตำราคณิตศาสตร์ แต่หากไม่มีพวกเขาก็ไม่สามารถมีคณิตศาสตร์ได้ กฎของคณิตศาสตร์ เช่นเดียวกับกฎของธรรมชาติ ทำงานไม่ว่าเราจะรู้เกี่ยวกับการมีอยู่ของมันหรือไม่ก็ตาม

ฟังก์ชันเชิงมุมเชิงเส้นเป็นกฎการบวกดูว่าพีชคณิตเปลี่ยนเป็นเรขาคณิตและเรขาคณิตกลายเป็นตรีโกณมิติได้อย่างไร

เป็นไปได้ไหมที่จะทำโดยไม่มีฟังก์ชันเชิงมุมเชิงเส้น? เป็นไปได้เพราะว่านักคณิตศาสตร์ยังคงจัดการได้หากไม่มีพวกมัน เคล็ดลับของนักคณิตศาสตร์ก็คือ พวกเขามักจะบอกเราเฉพาะปัญหาที่พวกเขารู้วิธีแก้เท่านั้น และไม่เคยพูดถึงปัญหาที่พวกเขาแก้ไม่ได้ ดู. ถ้าเรารู้ผลลัพธ์ของการบวกและเทอมหนึ่ง เราจะใช้การลบเพื่อค้นหาอีกเทอมหนึ่ง ทั้งหมด. เราไม่รู้ปัญหาอื่น ๆ และเราไม่รู้ว่าจะแก้ไขอย่างไร เราควรทำอย่างไรถ้าเรารู้แต่ผลบวกแต่ไม่รู้ทั้งสองพจน์? ในกรณีนี้ ผลลัพธ์ของการบวกจะต้องแบ่งออกเป็นสองเทอมโดยใช้ฟังก์ชันเชิงมุมเชิงเส้น ต่อไป เราเลือกเองว่าเทอมหนึ่งสามารถเป็นค่าใดได้ และฟังก์ชันเชิงมุมเชิงเส้นจะแสดงให้เห็นว่าเทอมที่สองควรเป็นค่าใด เพื่อให้ผลลัพธ์ของการบวกตรงกับที่เราต้องการ คู่เงื่อนไขดังกล่าวอาจมีจำนวนอนันต์ ใน ชีวิตประจำวันเราทำได้ดีโดยไม่ต้องแยกผลรวมออกก็เพียงพอแล้วสำหรับเรา แต่เมื่อ การวิจัยทางวิทยาศาสตร์กฎแห่งธรรมชาติ การแยกผลรวมออกเป็นส่วนประกอบจะมีประโยชน์มาก

กฎการบวกอีกข้อหนึ่งที่นักคณิตศาสตร์ไม่ชอบพูดถึง (กลเม็ดอีกอย่างหนึ่ง) กำหนดให้คำต่างๆ ต้องมีหน่วยการวัดที่เหมือนกัน สำหรับสลัด น้ำ และบอร์ชท์ อาจเป็นหน่วยของน้ำหนัก ปริมาตร ค่า หรือหน่วยวัด

รูปนี้แสดงความแตกต่างสองระดับสำหรับคณิตศาสตร์ ระดับแรกคือความแตกต่างในด้านตัวเลขซึ่งระบุไว้ , , - นี่คือสิ่งที่นักคณิตศาสตร์ทำ ระดับที่สองคือความแตกต่างในด้านหน่วยวัดซึ่งแสดงในวงเล็บเหลี่ยมและระบุด้วยตัวอักษร ยู- นี่คือสิ่งที่นักฟิสิกส์ทำ เราสามารถเข้าใจระดับที่สาม - ความแตกต่างในพื้นที่ของวัตถุที่อธิบายได้ วัตถุที่แตกต่างกันสามารถมีหน่วยวัดที่เหมือนกันจำนวนเท่ากันได้ สิ่งนี้สำคัญแค่ไหน เราสามารถเห็นได้จากตัวอย่างตรีโกณมิติบอร์ชท์ หากเราเพิ่มตัวห้อยให้กับการกำหนดหน่วยการวัดของวัตถุต่าง ๆ ที่เหมือนกัน เราก็สามารถบอกได้ชัดเจนว่าอันไหน ปริมาณทางคณิตศาสตร์อธิบายวัตถุเฉพาะและการเปลี่ยนแปลงตามเวลาหรือเนื่องจากการกระทำของเรา จดหมาย ฉันจะกำหนดน้ำด้วยตัวอักษร ฉันจะกำหนดสลัดด้วยตัวอักษร บี- บอร์ช นี่คือลักษณะของฟังก์ชันเชิงมุมเชิงเส้นของ Borscht

หากเรานำน้ำส่วนหนึ่งและสลัดบางส่วนมารวมกันก็จะกลายเป็น Borscht ส่วนหนึ่ง ฉันขอแนะนำให้คุณพักสมองจาก Borscht สักหน่อยแล้วนึกถึงวัยเด็กอันห่างไกลของคุณ จำได้ไหมว่าเราถูกสอนให้เอากระต่ายและเป็ดมารวมกันได้อย่างไร จำเป็นต้องค้นหาว่ามีสัตว์กี่ตัว ตอนนั้นเราถูกสอนให้ทำอะไร? เราได้รับการสอนให้แยกหน่วยการวัดออกจากตัวเลขแล้วบวกตัวเลข ใช่ คุณสามารถเพิ่มหมายเลขใดหมายเลขหนึ่งลงในหมายเลขอื่นได้ นี่เป็นเส้นทางตรงสู่ออทิสติกของคณิตศาสตร์สมัยใหม่ - เราทำอย่างไม่อาจเข้าใจได้ว่าทำไม เข้าใจไม่ได้ว่าทำไม และเข้าใจได้แย่มากว่าสิ่งนี้เกี่ยวข้องกับความเป็นจริงอย่างไร เนื่องจากความแตกต่างสามระดับ นักคณิตศาสตร์จึงดำเนินการด้วยระดับเดียวเท่านั้น การเรียนรู้วิธีย้ายจากหน่วยการวัดหนึ่งไปยังอีกหน่วยหนึ่งจะถูกต้องกว่า

กระต่าย เป็ด และสัตว์เล็กๆ สามารถนับเป็นชิ้นๆ ได้ หน่วยวัดทั่วไปหนึ่งหน่วยสำหรับวัตถุต่างๆ ช่วยให้เราสามารถรวมพวกมันเข้าด้วยกันได้ นี่เป็นปัญหาสำหรับเด็ก ลองดูปัญหาที่คล้ายกันสำหรับผู้ใหญ่ คุณจะได้อะไรเมื่อเพิ่มกระต่ายและเงิน? มีวิธีแก้ไขที่เป็นไปได้สองวิธีที่นี่

ตัวเลือกแรก- เรากำหนด มูลค่าตลาดกระต่ายและเพิ่มเข้าไปในจำนวนเงินที่มีอยู่ เราได้รับมูลค่ารวมของความมั่งคั่งของเราในรูปของตัวเงิน

ตัวเลือกที่สอง- คุณสามารถเพิ่มจำนวนกระต่ายเข้ากับจำนวนที่เรามีได้ ธนบัตร- เราจะได้รับจำนวนสังหาริมทรัพย์เป็นชิ้นๆ

อย่างที่คุณเห็น กฎการเพิ่มเดียวกันช่วยให้คุณได้รับผลลัพธ์ที่แตกต่างกัน ทุกอย่างขึ้นอยู่กับสิ่งที่เราอยากรู้อย่างแน่นอน

แต่กลับไปที่ Borscht ของเรากันดีกว่า ตอนนี้เรารู้แล้วว่าอะไรจะเกิดขึ้นเมื่อใด ความหมายที่แตกต่างกันมุมของฟังก์ชันเชิงมุมเชิงเส้น

มุมเป็นศูนย์ เรามีสลัดแต่ไม่มีน้ำ เราไม่สามารถปรุง Borscht ได้ ปริมาณ Borscht ก็เป็นศูนย์เช่นกัน นี่ไม่ได้หมายความว่าศูนย์ Borscht เท่ากับศูนย์น้ำเลย สามารถมี Borscht เป็นศูนย์ได้โดยมีสลัดเป็นศูนย์ (มุมขวา)


สำหรับฉันเป็นการส่วนตัว นี่คือข้อพิสูจน์ทางคณิตศาสตร์หลักที่ยืนยันว่า ศูนย์จะไม่เปลี่ยนตัวเลขเมื่อเพิ่ม สิ่งนี้เกิดขึ้นเนื่องจากการบวกนั้นเป็นไปไม่ได้หากมีเพียงเทอมเดียวและเทอมที่สองหายไป คุณสามารถรู้สึกเกี่ยวกับสิ่งนี้ได้ตามที่คุณต้องการ แต่จำไว้ว่า การดำเนินการทางคณิตศาสตร์ทั้งหมดที่มีศูนย์นั้นถูกคิดค้นโดยนักคณิตศาสตร์เอง ดังนั้นจงละทิ้งตรรกะของคุณและยัดเยียดคำจำกัดความที่นักคณิตศาสตร์คิดค้นขึ้นอย่างโง่เขลา: "การหารด้วยศูนย์เป็นไปไม่ได้" "จำนวนใด ๆ คูณด้วย ศูนย์เท่ากับศูนย์”, “เกินจุดเจาะศูนย์” และเรื่องไร้สาระอื่นๆ ก็เพียงพอที่จะจำไว้เมื่อศูนย์ไม่ใช่ตัวเลข และคุณจะไม่มีคำถามอีกต่อไปว่าศูนย์เป็นจำนวนธรรมชาติหรือไม่ เพราะคำถามดังกล่าวสูญเสียความหมายทั้งหมด: สิ่งที่ไม่ใช่ตัวเลขจะถือว่าเป็นตัวเลขได้อย่างไร ? มันเหมือนกับการถามว่าสีที่มองไม่เห็นควรจำแนกเป็นสีอะไร การเพิ่มศูนย์ให้กับตัวเลขจะเหมือนกับการทาสีด้วยสีที่ไม่มีอยู่ตรงนั้น เราโบกแปรงแห้งและบอกทุกคนว่า "เราทาสี" แต่ฉันพูดนอกเรื่องเล็กน้อย

มุมนั้นมากกว่าศูนย์แต่น้อยกว่าสี่สิบห้าองศา ผักกาดหอมเรามีเยอะแต่น้ำไม่พอ เป็นผลให้เราได้ Borscht ที่หนา

มุมคือสี่สิบห้าองศา เรามีน้ำและสลัดในปริมาณเท่ากัน นี่คือบอร์ชที่สมบูรณ์แบบ (ขออภัย เชฟ มันเป็นแค่คณิตศาสตร์)

มุมนั้นมากกว่าสี่สิบห้าองศา แต่น้อยกว่าเก้าสิบองศา เรามีน้ำเยอะและสลัดน้อย คุณจะได้รับบอร์ชท์เหลว

มุมฉาก. เรามีน้ำ สิ่งที่เหลืออยู่ในสลัดคือความทรงจำ ขณะที่เรายังคงวัดมุมจากเส้นที่เคยทำเครื่องหมายไว้บนสลัด เราไม่สามารถปรุง Borscht ได้ จำนวน Borscht เป็นศูนย์ ในกรณีนี้ให้ถือและดื่มน้ำในขณะที่คุณมี)))

ที่นี่. บางอย่างเช่นนี้ ฉันสามารถเล่าเรื่องอื่น ๆ ที่นี่ที่เหมาะเกินสมควรได้ที่นี่

เพื่อนสองคนมีส่วนแบ่งในธุรกิจร่วมกัน หลังจากฆ่าหนึ่งในนั้น ทุกอย่างก็ไปที่อีกอันหนึ่ง

การเกิดขึ้นของคณิตศาสตร์บนโลกของเรา

เรื่องราวทั้งหมดนี้บอกเล่าในภาษาคณิตศาสตร์โดยใช้ฟังก์ชันเชิงมุมเชิงเส้น คราวหน้า ฉันจะแสดงให้คุณเห็นตำแหน่งที่แท้จริงของฟังก์ชันเหล่านี้ในโครงสร้างทางคณิตศาสตร์ ในระหว่างนี้ ลองกลับไปที่ตรีโกณมิติบอร์ชท์แล้วพิจารณาเส้นโครงกัน

วันเสาร์ที่ 26 ตุลาคม 2019

วันพุธที่ 7 สิงหาคม 2019

เมื่อจบการสนทนา เราต้องพิจารณาเซตอนันต์ ประเด็นก็คือแนวคิดเรื่อง "อนันต์" ส่งผลต่อนักคณิตศาสตร์เหมือนกับงูเหลือมที่หดตัวส่งผลต่อกระต่าย ความสยดสยองอันสั่นสะท้านของความไม่มีที่สิ้นสุดทำให้นักคณิตศาสตร์ขาดสามัญสำนึก นี่คือตัวอย่าง:

แหล่งที่มาดั้งเดิมตั้งอยู่ อัลฟ่าย่อมาจากจำนวนจริง เครื่องหมายเท่ากับในนิพจน์ข้างต้นบ่งบอกว่าหากคุณเพิ่มตัวเลขหรืออนันต์เข้ากับอนันต์ จะไม่มีอะไรเปลี่ยนแปลง ผลลัพธ์ก็จะอนันต์เหมือนเดิม หากเราใช้เซตอนันต์ของจำนวนธรรมชาติเป็นตัวอย่าง ตัวอย่างที่พิจารณาสามารถแสดงในรูปแบบนี้ได้:

เพื่อพิสูจน์อย่างชัดเจนว่าถูกต้อง นักคณิตศาสตร์จึงคิดค้นวิธีการต่างๆ มากมาย โดยส่วนตัวแล้วฉันมองว่าวิธีการทั้งหมดนี้เป็นเหมือนหมอผีเต้นรำกับแทมบูรีน โดยพื้นฐานแล้ว พวกเขาทั้งหมดเดือดลงไปที่ความจริงที่ว่าห้องบางห้องว่างและมีแขกใหม่เข้ามา หรือผู้เยี่ยมชมบางคนถูกโยนออกไปที่ทางเดินเพื่อให้มีที่ว่างสำหรับแขก (เหมือนมนุษย์มาก) ฉันนำเสนอมุมมองของฉันเกี่ยวกับการตัดสินใจดังกล่าวในรูปแบบของเรื่องราวแฟนตาซีเกี่ยวกับสาวผมบลอนด์ เหตุผลของฉันมีพื้นฐานมาจากอะไร? การย้ายผู้เยี่ยมชมเป็นจำนวนไม่สิ้นสุดต้องใช้เวลาไม่สิ้นสุด หลังจากที่เราออกจากห้องแรกสำหรับแขกแล้ว ผู้มาเยี่ยมคนหนึ่งจะเดินไปตามทางเดินจากห้องของเขาไปยังห้องถัดไปจนกว่าจะหมดเวลา แน่นอนว่าปัจจัยด้านเวลาสามารถถูกมองข้ามอย่างโง่เขลาได้ แต่จะอยู่ในหมวดหมู่ของ "ไม่มีกฎหมายเขียนไว้สำหรับคนโง่" ทุกอย่างขึ้นอยู่กับสิ่งที่เรากำลังทำ: ปรับความเป็นจริงให้เป็นทฤษฎีทางคณิตศาสตร์หรือในทางกลับกัน

“โรงแรมที่ไม่มีที่สิ้นสุด” คืออะไร? โรงแรมที่ไม่มีที่สิ้นสุดคือโรงแรมที่มีเตียงว่างจำนวนเท่าใดก็ได้เสมอ ไม่ว่าจะมีคนอยู่กี่ห้องก็ตาม หากทุกห้องในทางเดิน "ผู้มาเยือน" ที่ไม่มีที่สิ้นสุดถูกครอบครอง ก็จะมีทางเดินที่ไม่มีที่สิ้นสุดอีกห้องที่มีห้อง "แขก" จะมีทางเดินดังกล่าวจำนวนอนันต์ ยิ่งไปกว่านั้น “โรงแรมที่ไม่มีที่สิ้นสุด” ยังมีจำนวนชั้นที่ไม่มีที่สิ้นสุดในอาคารจำนวนที่ไม่มีที่สิ้นสุดบนดาวเคราะห์จำนวนไม่สิ้นสุดในจักรวาลจำนวนอนันต์ที่สร้างขึ้นโดยเทพเจ้าจำนวนอนันต์ นักคณิตศาสตร์ไม่สามารถหลีกหนีจากปัญหาซ้ำซากในชีวิตประจำวันได้: พระเจ้า - อัลลอฮ์ - พุทธะมีเพียงองค์เดียวเสมอมีโรงแรมเพียงแห่งเดียวมีทางเดินเพียงแห่งเดียว นักคณิตศาสตร์จึงพยายามจัดการเลขลำดับ ห้องพักของโรงแรมทำให้เราเชื่อว่าเป็นไปได้ที่จะ "ผลักในสิ่งที่ผลักไม่ได้"

ฉันจะแสดงตรรกะของการใช้เหตุผลให้คุณดูโดยใช้ตัวอย่างเซตของจำนวนธรรมชาติที่ไม่มีที่สิ้นสุด ก่อนอื่นคุณต้องตอบคำถามง่ายๆ: มีจำนวนธรรมชาติกี่ชุด - หนึ่งชุดหรือหลายชุด? ไม่มีคำตอบที่ถูกต้องสำหรับคำถามนี้ เนื่องจากเราประดิษฐ์ตัวเลขขึ้นมาเอง ตัวเลขไม่มีอยู่ในธรรมชาติ ใช่ ธรรมชาติเก่งเรื่องการนับ แต่ด้วยเหตุนี้ เธอจึงใช้เครื่องมือทางคณิตศาสตร์อื่นๆ ที่เราไม่คุ้นเคย ฉันจะบอกคุณว่าธรรมชาติคิดอย่างไรอีกครั้ง เนื่องจากเราประดิษฐ์ตัวเลขขึ้นมา เราก็จะเป็นผู้ตัดสินใจว่าจำนวนธรรมชาติมีกี่ชุด ลองพิจารณาทั้งสองตัวเลือกตามความเหมาะสมกับนักวิทยาศาสตร์ที่แท้จริง

ตัวเลือกที่หนึ่ง “ให้เราได้รับ” ตัวเลขธรรมชาติชุดเดียวซึ่งวางอยู่อย่างสงบบนชั้นวาง เรานำชุดนี้มาจากชั้นวาง เพียงเท่านี้ ไม่มีตัวเลขธรรมชาติอื่นเหลืออยู่บนชั้นวางแล้วและไม่มีที่ไหนที่จะหยิบมันไปได้ เราไม่สามารถเพิ่มหนึ่งรายการในชุดนี้ได้ เนื่องจากเรามีอยู่แล้ว จะทำอย่างไรถ้าคุณต้องการจริงๆ? ไม่มีปัญหา. เราสามารถเอาอันหนึ่งจากชุดที่เราถ่ายไปแล้วและส่งคืนไปที่ชั้นวาง หลังจากนั้นเราก็สามารถนำอันหนึ่งจากชั้นวางมาเพิ่มเข้ากับสิ่งที่เราเหลือ ผลก็คือ เราจะได้เซตของจำนวนธรรมชาติที่ไม่มีที่สิ้นสุดอีกครั้ง คุณสามารถเขียนกิจวัตรทั้งหมดของเราดังนี้:

ฉันเขียนการกระทำในรูปแบบพีชคณิตและสัญลักษณ์ทฤษฎีเซต พร้อมรายการองค์ประกอบของเซตโดยละเอียด ตัวห้อยระบุว่าเรามีจำนวนธรรมชาติชุดเดียวเท่านั้น ปรากฎว่าเซตของจำนวนธรรมชาติจะยังคงไม่เปลี่ยนแปลงก็ต่อเมื่อมีการลบออกและเพิ่มหน่วยเดียวกัน

ตัวเลือกที่สอง เรามีชุดจำนวนธรรมชาติอนันต์หลายชุดบนชั้นวางของเรา ฉันเน้นย้ำ - แตกต่างแม้ว่าจะแยกไม่ออกในทางปฏิบัติก็ตาม ลองเอาหนึ่งในชุดเหล่านี้ จากนั้นเราก็นำจำนวนหนึ่งจากชุดของจำนวนธรรมชาติอีกชุดหนึ่งมาบวกเข้ากับชุดที่เราได้มาแล้ว เรายังบวกจำนวนธรรมชาติสองชุดได้ด้วย นี่คือสิ่งที่เราได้รับ:

ตัวห้อย "หนึ่ง" และ "สอง" ระบุว่าองค์ประกอบเหล่านี้เป็นของชุดที่ต่างกัน ใช่ หากคุณเพิ่มหนึ่งเข้าไปในเซตอนันต์ ผลลัพธ์จะเป็นเซตอนันต์ด้วย แต่จะไม่เหมือนกับเซตเดิม หากคุณเพิ่มเซตอนันต์อีกเซตให้กับเซตอนันต์หนึ่งเซต ผลลัพธ์จะเป็นเซตอนันต์ใหม่ที่ประกอบด้วยสมาชิกของสองเซตแรก

เซตของจำนวนธรรมชาติใช้สำหรับการนับแบบเดียวกับไม้บรรทัดสำหรับการวัด ทีนี้ลองนึกภาพว่าคุณบวกหนึ่งเซนติเมตรเข้ากับไม้บรรทัด นี่จะเป็นเส้นอื่นไม่เท่ากับเส้นเดิม

คุณสามารถยอมรับหรือไม่ยอมรับเหตุผลของฉันได้ - มันเป็นธุรกิจของคุณเอง แต่ถ้าคุณเคยประสบปัญหาทางคณิตศาสตร์ ลองคิดดูว่าคุณกำลังเดินตามแนวทางการใช้เหตุผลผิดๆ ที่นักคณิตศาสตร์รุ่นต่อรุ่นเหยียบย่ำอยู่หรือไม่ ท้ายที่สุดแล้ว ชั้นเรียนคณิตศาสตร์ ประการแรก สร้างแบบเหมารวมของการคิดที่มั่นคงในตัวเรา จากนั้นจึงเพิ่มเข้าไปในความคิดของเรา ความสามารถทางจิต(หรือในทางกลับกัน พวกเขากีดกันเราจากอิสระในการคิด)

pozg.ru

วันอาทิตย์ที่ 4 สิงหาคม 2019

ฉันกำลังเขียนบทความเกี่ยวกับบทความเกี่ยวกับเรื่องนี้อยู่และเห็นข้อความที่ยอดเยี่ยมนี้ใน Wikipedia:

เราอ่านว่า: "... รวย พื้นฐานทางทฤษฎีคณิตศาสตร์ของบาบิโลนไม่ได้มีลักษณะแบบองค์รวมและถูกลดทอนลงเหลือเพียงชุดเทคนิคที่แตกต่างกัน ปราศจาก ระบบทั่วไปและฐานหลักฐาน”

ว้าว! เราฉลาดแค่ไหนและมองเห็นข้อบกพร่องของผู้อื่นได้ดีเพียงใด เป็นเรื่องยากสำหรับเราที่จะมองคณิตศาสตร์สมัยใหม่ในบริบทเดียวกันหรือไม่? จากการถอดความข้อความข้างต้นเล็กน้อย ฉันได้รับสิ่งต่อไปนี้เป็นการส่วนตัว:

พื้นฐานทางทฤษฎีอันเข้มข้นของคณิตศาสตร์สมัยใหม่นั้นไม่ได้มีลักษณะเป็นองค์รวมและถูกลดทอนลงเหลือเพียงส่วนต่างๆ ที่แตกต่างกัน ปราศจากระบบและฐานหลักฐานที่เหมือนกัน

ฉันจะไม่ไปไกลเพื่อยืนยันคำพูดของฉัน - มันมีภาษาและแบบแผนที่แตกต่างจากภาษาและ สัญลักษณ์คณิตศาสตร์สาขาอื่น ๆ อีกมากมาย ชื่อเดียวกันในสาขาวิชาคณิตศาสตร์ที่แตกต่างกันสามารถมีความหมายต่างกันได้ ฉันต้องการอุทิศสิ่งพิมพ์ทั้งชุดให้กับข้อผิดพลาดที่ชัดเจนที่สุดของคณิตศาสตร์สมัยใหม่ แล้วพบกันใหม่เร็วๆ นี้

วันเสาร์ที่ 3 สิงหาคม 2019

จะแบ่งเซตออกเป็นเซตย่อยได้อย่างไร? ในการดำเนินการนี้ คุณจะต้องป้อนหน่วยการวัดใหม่ที่มีอยู่ในองค์ประกอบบางส่วนของชุดที่เลือก ลองดูตัวอย่าง

ขอให้เรามีมากมาย ประกอบด้วยสี่คน ชุดนี้ถูกสร้างขึ้นบนพื้นฐานของ "คน" ให้เราแสดงองค์ประกอบของชุดนี้ด้วยตัวอักษร ตัวห้อยที่มีตัวเลขจะระบุหมายเลขซีเรียลของแต่ละคนในชุดนี้ ขอแนะนำหน่วยวัด "เพศ" ใหม่และเขียนแทนด้วยตัวอักษร - เนื่องจากลักษณะทางเพศมีอยู่ในทุกคน เราจึงเพิ่มแต่ละองค์ประกอบของชุด ขึ้นอยู่กับเพศ - โปรดสังเกตว่าตอนนี้กลุ่ม "คน" ของเรากลายเป็นกลุ่ม "คนที่มีลักษณะทางเพศ" แล้ว หลังจากนี้เราสามารถแบ่งลักษณะทางเพศออกเป็นเพศชายได้ บีเอ็มและของผู้หญิง bwลักษณะทางเพศ ตอนนี้เราสามารถใช้ตัวกรองทางคณิตศาสตร์ได้: เราเลือกลักษณะทางเพศอย่างใดอย่างหนึ่งเหล่านี้ ไม่ว่าจะเป็นชายหรือหญิงก็ตาม ถ้าคนมี เราก็คูณมันด้วย 1 หากไม่มีเครื่องหมาย เราก็คูณมันด้วยศูนย์ แล้วเราก็ใช้คณิตศาสตร์ของโรงเรียนปกติ ดูสิ่งที่เกิดขึ้น

หลังจากการคูณ การลดลง และการจัดเรียงใหม่ เราก็ได้เซตย่อยสองชุด: เซตย่อยของผู้ชาย บีมและกลุ่มย่อยของผู้หญิง บว- นักคณิตศาสตร์ให้เหตุผลในลักษณะเดียวกันโดยประมาณเมื่อพวกเขาใช้ทฤษฎีเซตในทางปฏิบัติ แต่พวกเขาไม่ได้บอกรายละเอียดให้เราทราบ แต่ให้ผลลัพธ์ที่ครบถ้วนแก่เรา - "ผู้คนจำนวนมากประกอบด้วยกลุ่มย่อยของผู้ชายและส่วนหนึ่งของผู้หญิง" โดยปกติแล้ว คุณอาจมีคำถาม: คณิตศาสตร์ถูกนำไปใช้ในการแปลงที่อธิบายไว้ข้างต้นอย่างถูกต้องเพียงใด ฉันกล้ารับรองกับคุณว่าโดยพื้นฐานแล้วทุกอย่างถูกต้องแล้ว การรู้พื้นฐานทางคณิตศาสตร์ของเลขคณิต พีชคณิตแบบบูลีน และสาขาอื่นๆ ของคณิตศาสตร์ก็เพียงพอแล้ว มันคืออะไร? ฉันจะบอกคุณเกี่ยวกับเรื่องนี้อีกครั้ง

สำหรับซูเปอร์เซ็ต คุณสามารถรวมสองชุดให้เป็นซูเปอร์เซ็ตเดียวได้โดยการเลือกหน่วยการวัดที่อยู่ในองค์ประกอบของทั้งสองชุดนี้

ดังที่คุณเห็น หน่วยการวัดและคณิตศาสตร์ทั่วไปทำให้ทฤษฎีเซตกลายเป็นมรดกตกทอดจากอดีต สัญญาณที่บ่งบอกว่าทุกอย่างไม่เป็นไปตามทฤษฎีเซตก็คือนักคณิตศาสตร์มีภาษาและสัญลักษณ์ของตนเองขึ้นมาสำหรับทฤษฎีเซต นักคณิตศาสตร์ก็ทำตัวเหมือนหมอผีที่ครั้งหนึ่งเคยทำ มีเพียงหมอผีเท่านั้นที่รู้วิธีใช้ “ความรู้” ของตน “อย่างถูกต้อง” พวกเขาสอนเรา "ความรู้" นี้

โดยสรุป ฉันต้องการแสดงให้คุณเห็นว่านักคณิตศาสตร์จัดการกับ .

วันจันทร์ที่ 7 มกราคม 2019

ในศตวรรษที่ห้าก่อนคริสต์ศักราช นักปรัชญาชาวกรีกโบราณ Zeno of Elea ได้คิดค้น aporia ที่มีชื่อเสียงของเขาขึ้นมา ซึ่งที่มีชื่อเสียงที่สุดก็คือ aporia "Achilles and the Tortoise" นี่คือสิ่งที่ดูเหมือน:

สมมติว่าจุดอ่อนวิ่งเร็วกว่าเต่าสิบเท่าและตามหลังเต่าไปหนึ่งพันก้าว ในช่วงเวลาที่จุดอ่อนต้องใช้เพื่อวิ่งระยะนี้ เต่าจะคลานไปร้อยขั้นในทิศทางเดียวกัน เมื่ออคิลลีสวิ่งร้อยก้าว เต่าจะคลานไปอีกสิบก้าว ไปเรื่อยๆ กระบวนการนี้จะดำเนินต่อไปอย่างไม่มีที่สิ้นสุด อคิลลีสจะตามเต่าไม่ทัน

เหตุผลนี้สร้างความตกใจให้กับคนรุ่นต่อๆ ไป Aristotle, Diogenes, Kant, Hegel, Hilbert... พวกเขาทั้งหมดถือว่า Aporia ของ Zeno ไม่ทางใดก็ทางหนึ่ง ช็อกหนักมากจน” ... การอภิปรายยังคงดำเนินต่อไปจนถึงทุกวันนี้ ชุมชนวิทยาศาสตร์ยังไม่สามารถมีความเห็นร่วมกันเกี่ยวกับสาระสำคัญของความขัดแย้งได้ ... การวิเคราะห์ทางคณิตศาสตร์ ทฤษฎีเซต วิธีทางกายภาพและปรัชญาใหม่ ๆ มีส่วนร่วมในการศึกษาปัญหานี้ ; ไม่มีวิธีใดที่เป็นที่ยอมรับโดยทั่วไปในการแก้ปัญหา..."[วิกิพีเดีย "Aporia ของ Zeno" ทุกคนเข้าใจว่าพวกเขากำลังถูกหลอก แต่ไม่มีใครเข้าใจว่าการหลอกลวงประกอบด้วยอะไร

จากมุมมองทางคณิตศาสตร์ ฉีโนใน Aporia ของเขาแสดงให้เห็นอย่างชัดเจนถึงการเปลี่ยนจากปริมาณเป็น การเปลี่ยนแปลงนี้หมายถึงการใช้งานแทนที่จะเป็นแบบถาวร เท่าที่ฉันเข้าใจเครื่องมือทางคณิตศาสตร์ของการประยุกต์ใช้ หน่วยตัวแปรการวัดยังไม่ได้รับการพัฒนาหรือไม่ได้นำไปใช้กับ Aporia ของ Zeno การใช้งานของเรา ตรรกะธรรมดานำเราเข้าสู่กับดัก เนื่องจากความเฉื่อยของการคิด เราใช้หน่วยเวลาคงที่กับค่าส่วนกลับ จากมุมมองทางกายภาพ ดูเหมือนว่าเวลาจะเดินช้าลงจนกระทั่งหยุดสนิทในขณะที่ Achilles ตามทันเต่า หากเวลาหยุดลง Achilles จะไม่สามารถวิ่งเร็วกว่าเต่าได้อีกต่อไป

ถ้าเราเปลี่ยนตรรกะตามปกติ ทุกอย่างก็เข้าที่ Achilles วิ่งด้วยความเร็วคงที่ แต่ละส่วนต่อมาของเส้นทางของเขาจะสั้นกว่าส่วนก่อนหน้าสิบเท่า ดังนั้นเวลาที่ใช้ในการเอาชนะจึงน้อยกว่าครั้งก่อนถึงสิบเท่า หากเราใช้แนวคิดเรื่อง "อนันต์" ในสถานการณ์นี้ ก็คงจะถูกต้องที่จะพูดว่า "อคิลลีสจะไล่ตามเต่าอย่างรวดเร็วอย่างไม่สิ้นสุด"

จะหลีกเลี่ยงกับดักเชิงตรรกะนี้ได้อย่างไร? คงอยู่ในหน่วยเวลาคงที่และอย่าเปลี่ยนไปใช้หน่วยต่างตอบแทน ในภาษาของ Zeno มีลักษณะดังนี้:

ในเวลาที่อคิลลีสต้องวิ่งพันก้าว เต่าจะคลานไปในทิศทางเดียวกันนับร้อยก้าว ในช่วงเวลาถัดไปเท่ากับช่วงแรก อคิลลีสจะวิ่งอีกพันก้าว และเต่าจะคลานไปหนึ่งร้อยก้าว ตอนนี้อคิลลิสนำหน้าเต่าไปแปดร้อยก้าว

แนวทางนี้อธิบายความเป็นจริงได้อย่างเพียงพอโดยไม่มีความขัดแย้งทางตรรกะใดๆ แต่มันไม่ใช่ โซลูชั่นที่สมบูรณ์ปัญหา. คำกล่าวของไอน์สไตน์เกี่ยวกับความเร็วแสงที่ไม่อาจต้านทานได้นั้นคล้ายคลึงกับเรื่อง "Achilles and the Tortoise" ของ Zeno มาก เรายังต้องศึกษา คิดใหม่ และแก้ไขปัญหานี้ และต้องค้นหาวิธีแก้ปัญหาไม่ใช่ในจำนวนมากไม่สิ้นสุด แต่ต้องค้นหาในหน่วยการวัด

Aporia ที่น่าสนใจอีกประการหนึ่งของ Zeno เล่าเกี่ยวกับลูกศรบิน:

ลูกธนูที่บินอยู่นั้นไม่เคลื่อนที่ เนื่องจากมันจะอยู่นิ่งทุกช่วงเวลา และเนื่องจากมันอยู่นิ่งทุกช่วงเวลา มันจึงอยู่นิ่งอยู่เสมอ

ใน aporia นี้ ความขัดแย้งเชิงตรรกะจะเอาชนะได้ง่ายมาก - ก็เพียงพอที่จะชี้แจงว่าในแต่ละช่วงเวลาลูกศรที่บินอยู่จะหยุดนิ่ง ณ จุดต่าง ๆ ในอวกาศ ซึ่งในความเป็นจริงคือการเคลื่อนไหว อีกประเด็นหนึ่งที่ต้องสังเกตที่นี่ จากรูปถ่ายของรถยนต์คันหนึ่งบนท้องถนนไม่สามารถระบุความจริงของการเคลื่อนไหวหรือระยะทางได้ ในการพิจารณาว่ารถยนต์กำลังเคลื่อนที่อยู่หรือไม่ คุณต้องถ่ายภาพสองภาพที่ถ่ายจากจุดเดียวกันและเวลาที่ต่างกัน แต่คุณไม่สามารถระบุระยะห่างจากรถเหล่านั้นได้ ในการกำหนดระยะทางถึงรถ คุณต้องถ่ายรูปสองรูป จุดที่แตกต่างกันพื้นที่ ณ จุดหนึ่ง แต่มันเป็นไปไม่ได้ที่จะระบุความจริงของการเคลื่อนไหวจากพวกเขา (โดยธรรมชาติแล้วยังจำเป็นต้องมีข้อมูลเพิ่มเติมสำหรับการคำนวณตรีโกณมิติจะช่วยคุณ) สิ่งที่ฉันต้องการจะชี้ให้เห็น ความสนใจเป็นพิเศษคือจุดสองจุดในเวลาและสองจุดในอวกาศเป็นสิ่งที่ต่างกันซึ่งไม่ควรสับสนเนื่องจากให้โอกาสในการวิจัยที่แตกต่างกัน
ฉันจะแสดงกระบวนการพร้อมตัวอย่างให้คุณดู เราเลือก "ของแข็งสีแดงในสิว" - นี่คือ "ทั้งหมด" ของเรา ในขณะเดียวกัน เราก็เห็นว่าสิ่งเหล่านี้มีธนูและไม่มีธนู หลังจากนั้นเราเลือกส่วนหนึ่งของ "ทั้งหมด" และสร้างชุด "พร้อมธนู" นี่คือวิธีที่หมอผีได้รับอาหารโดยผูกทฤษฎีเซตไว้กับความเป็นจริง

ตอนนี้เรามาทำเคล็ดลับเล็กน้อย เรามาลอง "แข็งด้วยสิวด้วยธนู" แล้วรวม "ทั้งก้อน" เหล่านี้ตามสี โดยเลือกองค์ประกอบสีแดง เรามี "สีแดง" มากมาย มาถึงคำถามสุดท้าย: ชุดผลลัพธ์ "มีธนู" และ "สีแดง" เป็นชุดเดียวกันหรือสองชุดที่แตกต่างกันหรือไม่? หมอผีเท่านั้นที่รู้คำตอบ แม่นยำยิ่งขึ้นพวกเขาเองไม่รู้อะไรเลย แต่อย่างที่พวกเขาพูดมันก็เป็นเช่นนั้น

ตัวอย่างง่ายๆ นี้แสดงให้เห็นว่าทฤษฎีเซตไม่มีประโยชน์เลยเมื่อพูดถึงความเป็นจริง ความลับคืออะไร? เราสร้างชุด "ของแข็งสีแดงมีสิวและธนู" การก่อตัวเกิดขึ้นในหน่วยการวัดที่แตกต่างกันสี่หน่วย: สี (สีแดง) ความแข็งแกร่ง (ของแข็ง) ความหยาบ (สิว) การตกแต่ง (ด้วยธนู) มีเพียงชุดหน่วยวัดเท่านั้นที่ช่วยให้เราอธิบายวัตถุจริงในภาษาคณิตศาสตร์ได้อย่างเพียงพอ- นี่คือสิ่งที่ดูเหมือน

ตัวอักษร "a" ที่มีดัชนีต่างกันหมายถึงหน่วยการวัดที่แตกต่างกัน หน่วยการวัดที่แยกแยะ "ทั้งหมด" ในขั้นตอนเบื้องต้นจะถูกเน้นในวงเล็บ หน่วยวัดที่ใช้สร้างเซตจะถูกนำออกจากวงเล็บ บรรทัดสุดท้ายแสดงผลสุดท้าย - องค์ประกอบของชุด อย่างที่คุณเห็น หากเราใช้หน่วยการวัดเพื่อสร้างเซต ผลลัพธ์ที่ได้จะไม่ขึ้นอยู่กับลำดับการกระทำของเรา และนี่คือคณิตศาสตร์ ไม่ใช่การเต้นรำของหมอผีกับแทมบูรีน หมอผีสามารถ "บรรลุผลแบบเดียวกันโดยสัญชาตญาณ" โดยโต้แย้งว่า "ชัดเจน" เพราะหน่วยการวัดไม่ได้เป็นส่วนหนึ่งของคลังแสง "ทางวิทยาศาสตร์" ของพวกเขา

การใช้หน่วยวัดทำให้เป็นเรื่องง่ายมากที่จะแยกหนึ่งชุดหรือรวมหลายชุดเป็นซูเปอร์เซ็ตเดียว มาดูพีชคณิตของกระบวนการนี้กันดีกว่า

จำนวนที่ง่ายที่สุดคือ จำนวนธรรมชาติ- ใช้ในชีวิตประจำวันเพื่อการนับ วัตถุเช่น เพื่อคำนวณจำนวนและลำดับ

จำนวนธรรมชาติคืออะไร: ตัวเลขธรรมชาติตั้งชื่อหมายเลขที่ใช้ การนับรายการหรือระบุหมายเลขลำดับของรายการใด ๆ จากที่เป็นเนื้อเดียวกันทั้งหมดรายการ

จำนวนเต็ม - นี่คือตัวเลขที่เริ่มต้นจากหนึ่ง พวกมันถูกสร้างขึ้นตามธรรมชาติเมื่อทำการนับเช่น 1,2,3,4,5... -จำนวนธรรมชาติตัวแรก

จำนวนธรรมชาติที่น้อยที่สุด- หนึ่ง. ไม่มีจำนวนธรรมชาติใดที่ยิ่งใหญ่ที่สุด เมื่อนับเลขแล้ว ไม่ได้ใช้ศูนย์ ดังนั้น 0 จึงเป็นจำนวนธรรมชาติ

อนุกรมจำนวนธรรมชาติคือลำดับของจำนวนธรรมชาติทั้งหมด การเขียนจำนวนธรรมชาติ:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 ...

ในชุดข้อมูลทั่วไป แต่ละหมายเลขจะมากกว่าตัวเลขก่อนหน้าทีละตัว

อนุกรมธรรมชาติมีกี่จำนวน? อนุกรมธรรมชาตินั้นไม่มีที่สิ้นสุด ไม่มีจำนวนธรรมชาติที่ใหญ่ที่สุด

ทศนิยมตั้งแต่ 10 หน่วยของหลักใดๆ จะเท่ากับ 1 หน่วยของหลักสูงสุด ตามตำแหน่งแล้ว ความหมายของตัวเลขขึ้นอยู่กับตำแหน่งของตัวเลขเช่น จากหมวดที่เขียน

คลาสของจำนวนธรรมชาติ

จำนวนธรรมชาติใดๆ สามารถเขียนได้โดยใช้เลขอารบิค 10 ตัว:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

การอ่านจำนวนธรรมชาติจะแบ่งเป็นกลุ่มๆ ละ 3 หลัก โดยเริ่มจากด้านขวา 3 ก่อน ตัวเลขทางขวาคือคลาสของหน่วย 3 ถัดมาคือคลาสหลักพัน ตามด้วยคลาสล้าน พันล้าน และฯลฯ ตัวเลขแต่ละตัวของคลาสเรียกว่ามันปล่อย.

การเปรียบเทียบจำนวนธรรมชาติ

ของจำนวนธรรมชาติ 2 ตัว ยิ่งน้อยกว่าคือจำนวนที่ถูกเรียกก่อนหน้าในการนับ ตัวอย่างเช่น, ตัวเลข 7 น้อย 11 (เขียนไว้ดังนี้:7 < 11 - เมื่อเลขตัวหนึ่ง มากกว่าวินาทีมันเขียนดังนี้:386 > 99 .

ตารางหลักและประเภทของตัวเลข

หน่วยชั้น 1

หลักที่ 1 ของหน่วย

หลักที่ 2 หลักสิบ

อันดับที่ 3 หลายร้อย

ชั้น2พัน

หลักที่ 1 ของหน่วยพัน

หลักที่ 2 หลักหมื่น

ประเภทที่ 3 หลักแสน

ชั้น 3 ล้าน

หลักที่ 1 ของหน่วยล้าน

ประเภทที่ 2 หลักสิบล้าน

ประเภทที่ 3 หลายร้อยล้าน

ชั้น 4 พันล้าน

หลักที่ 1 ของหน่วยพันล้าน

ประเภทที่ 2 หมื่นล้าน

ประเภทที่ 3 แสนล้าน

ตัวเลขตั้งแต่ชั้นประถมศึกษาปีที่ 5 ขึ้นไปหมายถึง จำนวนมาก- หน่วยของชั้นที่ 5 คือล้านล้าน, ชั้นที่ 6 คลาส - สี่ล้านล้าน ชั้นที่ 7 - ควินทิล้าน ชั้นที่ 8 - หกล้านล้าน ชั้นที่ 9 -เอทิลเลี่ยน

คุณสมบัติพื้นฐานของจำนวนธรรมชาติ

  • การสับเปลี่ยนของการบวก - ก + ข = ข + ก
  • การสับเปลี่ยนของการคูณ เอบี = บา
  • ความเชื่อมโยงของการบวก (ก + ข) + ค = ก + (ข + ค)
  • ความสัมพันธ์ของการคูณ
  • การกระจายตัวของการคูณสัมพันธ์กับการบวก:

การดำเนินการกับจำนวนธรรมชาติ

4. การหารจำนวนธรรมชาติคือการดำเนินการผกผันของการคูณ

ถ้า ข ∙ ค = ก, ที่

สูตรสำหรับการหาร:

ก: 1 = ก

ก: ก = 1, ก ≠ 0

0: ก = 0, ก ≠ 0

(∙ ข) : ค = (a:c) ∙ ข

(∙ ข) : ค = (b:c) ∙ ก

นิพจน์เชิงตัวเลขและความเท่าเทียมกันเชิงตัวเลข

สัญลักษณ์ที่ตัวเลขเชื่อมต่อกันด้วยสัญลักษณ์การกระทำคือ นิพจน์เชิงตัวเลข.

ตัวอย่างเช่น 10∙3+4; (60-2∙5):10.

บันทึกที่มีนิพจน์ตัวเลข 2 รายการรวมกับเครื่องหมายเท่ากับ ความเท่าเทียมกันเชิงตัวเลข. ความเท่าเทียมกันมีด้านซ้ายและขวา

ลำดับการดำเนินการทางคณิตศาสตร์

การบวกและการลบตัวเลขเป็นการดำเนินการในระดับที่ 1 ในขณะที่การคูณและการหารเป็นการดำเนินการในระดับที่ 2

เมื่อไร นิพจน์ตัวเลขประกอบด้วยการกระทำเพียงระดับเดียวเท่านั้น โดยจะดำเนินการตามลำดับจากซ้ายไปขวา.

เมื่อนิพจน์ประกอบด้วยการกระทำของระดับที่หนึ่งและสองเท่านั้น การดำเนินการนั้นจะถูกดำเนินการก่อน ระดับที่สองจากนั้น - การกระทำของระดับแรก

เมื่อมีวงเล็บในนิพจน์ การดำเนินการในวงเล็บจะถูกดำเนินการก่อน

ตัวอย่างเช่น 36:(10-4)+3∙5= 36:6+15 = 6+15 = 21

ตัวเลขธรรมชาติคือตัวเลขที่ใช้ในการนับวัตถุ จำนวนธรรมชาติไม่รวมถึง:

  • จำนวนลบ (เช่น -1, -2, -100)
  • ตัวเลขเศษส่วน (เช่น 1.1 หรือ 6/89)
  • หมายเลข 0

เขียนจำนวนธรรมชาติที่น้อยกว่า 5

จะมีตัวเลขดังกล่าวอยู่สองสามตัว:
1, 2, 3, 4 - ทั้งหมดนี้เป็นจำนวนธรรมชาติที่น้อยกว่า 5 ไม่มีจำนวนดังกล่าวอีกต่อไป
ตอนนี้ยังคงเขียนตัวเลขที่ตรงข้ามกับตัวเลขธรรมชาติที่พบ ข้อมูลตรงข้ามคือตัวเลขที่มีเครื่องหมายตรงกันข้าม (หรืออีกนัยหนึ่งคือตัวเลขคูณด้วย -1) เพื่อให้เราค้นหาตัวเลขตรงข้ามกับตัวเลข 1, 2, 3, 4 เราต้องเขียนตัวเลขเหล่านี้ทั้งหมดด้วย เครื่องหมายตรงข้าม(คูณด้วย -1) มาทำกัน:
-1, -2, -3, -4 - นี่คือตัวเลขทั้งหมดที่อยู่ตรงข้ามกับตัวเลข 1, 2, 3, 4 มาเขียนคำตอบกัน
ตอบ: จำนวนธรรมชาติที่น้อยกว่า 5 คือ ตัวเลข 1, 2, 3, 4;
ตัวเลขที่อยู่ตรงข้ามกับตัวเลขที่พบคือ ตัวเลข -1, -2, -3, -4

ประวัติศาสตร์ของจำนวนธรรมชาติเริ่มต้นขึ้นในสมัยดึกดำบรรพ์ตั้งแต่สมัยโบราณผู้คนได้นับสิ่งของต่างๆ ตัวอย่างเช่น ในการค้าขายคุณต้องมีบัญชีสินค้าหรือบัญชีวัสดุในการก่อสร้าง ใช่แล้ว ในชีวิตประจำวันฉันยังต้องนับสิ่งของ อาหาร ปศุสัตว์อีกด้วย ในตอนแรก ตัวเลขใช้ในการนับในชีวิตในทางปฏิบัติเท่านั้น แต่ต่อมาเมื่อมีการพัฒนาทางคณิตศาสตร์ ตัวเลขเหล่านี้จึงกลายเป็นส่วนหนึ่งของวิทยาศาสตร์

จำนวนเต็ม- นี่คือตัวเลขที่เราใช้เมื่อนับวัตถุ

ตัวอย่างเช่น: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ….

ศูนย์ไม่ใช่จำนวนธรรมชาติ

จำนวนธรรมชาติทั้งหมด หรือสมมติว่าเซตของจำนวนธรรมชาติ เขียนแทนด้วยสัญลักษณ์ N

ตารางตัวเลขธรรมชาติ

ซีรีย์ธรรมชาติ

จำนวนธรรมชาติเขียนเรียงกันเป็นแถวเรียงจากน้อยไปหามาก ซีรีส์ธรรมชาติหรือ ชุดของจำนวนธรรมชาติ

คุณสมบัติของซีรีย์ธรรมชาติ:

  • จำนวนธรรมชาติที่น้อยที่สุดคือหนึ่ง
  • ในอนุกรมธรรมชาติ จำนวนถัดไปจะมากกว่าตัวเลขก่อนหน้าทีละตัว (1, 2, 3, ...) จะมีการวางจุดหรือวงรีสามจุดหากไม่สามารถเรียงลำดับตัวเลขได้
  • อนุกรมธรรมชาติไม่มีจำนวนมากที่สุด แต่เป็นจำนวนอนันต์

ตัวอย่าง #1:
เขียนตัวเลขธรรมชาติ 5 ตัวแรก
สารละลาย:
จำนวนธรรมชาติเริ่มต้นจากหนึ่ง
1, 2, 3, 4, 5

ตัวอย่าง #2:
ศูนย์เป็นจำนวนธรรมชาติหรือไม่?
คำตอบ: ไม่.

ตัวอย่าง #3:
หมายเลขแรกในชุดธรรมชาติคืออะไร?
คำตอบ: ซีรีส์ธรรมชาติเริ่มต้นจากหนึ่ง

ตัวอย่าง #4:
เลขสุดท้ายในชุดธรรมชาติคือเลขอะไร? จำนวนธรรมชาติที่ใหญ่ที่สุดคืออะไร?
คำตอบ: ซีรีส์ธรรมชาติเริ่มต้นด้วยหนึ่ง แต่ละหมายเลขถัดไปจะมากกว่าหมายเลขก่อนหน้าทีละหมายเลข ดังนั้นจึงไม่มีหมายเลขสุดท้าย ตัวเขาเอง จำนวนมากเลขที่

ตัวอย่าง #5:
รายการในซีรีย์ธรรมชาติมีหมายเลขก่อนหน้าหรือไม่?
คำตอบ: ไม่ใช่ เพราะตัวหนึ่งเป็นตัวเลขตัวแรกในชุดข้อมูลธรรมชาติ

ตัวอย่าง #6:
ตั้งชื่อหมายเลขถัดไปในชุดข้อมูลธรรมชาติ: a)5, b)67, c)9998
คำตอบ: ก)6, ข)68, ค)9999

ตัวอย่าง #7:
มีตัวเลขจำนวนเท่าใดในอนุกรมธรรมชาติระหว่างตัวเลข: ก) 1 และ 5, ข) 14 และ 19
สารละลาย:
ก) 1, 2, 3, 4, 5 – ตัวเลขสามตัวอยู่ระหว่างหมายเลข 1 ถึง 5
b) 14, 15, 16, 17, 18, 19 – ตัวเลขสี่ตัวอยู่ระหว่างหมายเลข 14 ถึง 19

ตัวอย่างที่ 8:
พูดตัวเลขก่อนหน้าหลัง 11
คำตอบ: 10.

ตัวอย่างที่ 9:
ตัวเลขใดที่ใช้ในการนับวัตถุ?
คำตอบ: ตัวเลขธรรมชาติ



สิ่งพิมพ์ที่เกี่ยวข้อง