พื้นที่ของรูปเป็นอินทิกรัลจำกัดเขต การหาพื้นที่ของรูปที่ล้อมรอบด้วยเส้นตรง y=f(x), x=g(y)

ใน ส่วนก่อนหน้าทุ่มเทให้กับการวิเคราะห์ความหมายทางเรขาคณิตของอินทิกรัลจำกัดเราได้รับสูตรจำนวนหนึ่งสำหรับการคำนวณพื้นที่ของสี่เหลี่ยมคางหมูโค้ง:

ยานเดกซ์ RTB R-A-339285-1

S (G) = ∫ a b f (x) d x สำหรับฟังก์ชันต่อเนื่องและไม่เป็นลบ y = f (x) ในช่วงเวลา [ a ; ข ] ,

S (G) = - ∫ a b f (x) d x สำหรับฟังก์ชันต่อเนื่องและไม่เป็นบวก y = f (x) ในช่วงเวลา [ a ; ข ] .

สูตรเหล่านี้ใช้ได้กับการแก้ปัญหาที่ค่อนข้างง่าย ในความเป็นจริง เรามักจะต้องทำงานกับตัวเลขที่ซับซ้อนมากขึ้น ในเรื่องนี้เราจะอุทิศส่วนนี้เพื่อวิเคราะห์อัลกอริธึมสำหรับการคำนวณพื้นที่ของตัวเลขที่ถูกจำกัดโดยฟังก์ชันในรูปแบบที่ชัดเจน เช่น เช่น y = f(x) หรือ x = g(y)

ทฤษฎีบท

ปล่อยให้ฟังก์ชัน y = f 1 (x) และ y = f 2 (x) ถูกกำหนดและต่อเนื่องกันในช่วงเวลา [ a ; b ] และ f 1 (x) ≤ f 2 (x) สำหรับค่าใดๆ ก็ตาม x จาก [ a ; ข ] . จากนั้นสูตรคำนวณพื้นที่ของรูป G ที่ล้อมรอบด้วยเส้น x = a, x = b, y = f 1 (x) และ y = f 2 (x) จะมีลักษณะดังนี้ S (G) = ∫ ข ฉ 2 (x) - ฉ 1 (x) ง x .

สูตรที่คล้ายกันจะใช้ได้กับพื้นที่ของรูปที่ล้อมรอบด้วยเส้น y = c, y = d, x = g 1 (y) และ x = g 2 (y): S (G) = ∫ c d ( ก 2 (y) - ก 1 (y) ได .

การพิสูจน์

ลองดูสามกรณีที่สูตรจะใช้ได้

ในกรณีแรก เมื่อคำนึงถึงคุณสมบัติของการเพิ่มพื้นที่ ผลรวมของพื้นที่ของรูป G ดั้งเดิมและรูปสี่เหลี่ยมคางหมูโค้ง G 1 เท่ากับพื้นที่ของรูป G 2 มันหมายความว่าอย่างนั้น

ดังนั้น S (G) = S (G 2) - S (G 1) = ∫ a b f 2 (x) d x - ∫ a b f 1 (x) d x = ∫ a b (f 2 (x) - f 1 (x)) ดีเอ็กซ์

เราสามารถดำเนินการเปลี่ยนผ่านครั้งล่าสุดได้โดยใช้คุณสมบัติที่สามของอินทิกรัลจำกัดเขต

ในกรณีที่สอง ความเท่าเทียมกันเป็นจริง: S (G) = S (G 2) + S (G 1) = ∫ a b f 2 (x) d x + - ∫ a b f 1 (x) d x = ∫ a b (f 2 ( x) - ฉ 1 (x)) ง x

ภาพประกอบกราฟิกจะมีลักษณะดังนี้:

หากฟังก์ชันทั้งสองไม่เป็นค่าบวก เราจะได้: S (G) = S (G 2) - S (G 1) = - ∫ a b f 2 (x) d x - - ∫ a b f 1 (x) d x = ∫ a b (f 2 (x) - ฉ 1 (x)) ง x . ภาพประกอบกราฟิกจะมีลักษณะดังนี้:

มาดูกรณีทั่วไปกันต่อเมื่อ y = f 1 (x) และ y = f 2 (x) ตัดกับแกน O x

เราแสดงจุดตัดกันเป็น x i, i = 1, 2, . - - , n - 1 . จุดเหล่านี้แบ่งส่วน [a; b ] เป็น n ส่วน x i - 1 ; x ผม, ผม = 1, 2, . - - , n โดยที่ α = x 0< x 1 < x 2 < . . . < x n - 1 < x n = b . Фигуру G можно представить объединением фигур G i , i = 1 , 2 , . . . , n . Очевидно, что на своем интервале G i попадает под один из трех рассмотренных ранее случаев, поэтому их площади находятся как S (G i) = ∫ x i - 1 x i (f 2 (x) - f 1 (x)) d x , i = 1 , 2 , . . . , n

เพราะฉะนั้น,

S (G) = ∑ i = 1 n S (G i) = ∑ i = 1 n ∫ x i x i f 2 (x) - f 1 (x)) d x = = ∫ x 0 x n (f 2 (x) - f ( x)) d x = ∫ ข ฉ 2 (x) - ฉ 1 (x) d x

เราสามารถทำการเปลี่ยนแปลงครั้งล่าสุดได้โดยใช้คุณสมบัติที่ห้าของอินทิกรัลจำกัดเขต

ให้เราอธิบายกรณีทั่วไปบนกราฟ

สูตร S (G) = ∫ ab f 2 (x) - f 1 (x) d x ถือได้ว่าพิสูจน์แล้ว

ตอนนี้เรามาดูการวิเคราะห์ตัวอย่างการคำนวณพื้นที่ของตัวเลขที่ถูกจำกัดด้วยเส้น y = f (x) และ x = g (y)

เราจะเริ่มพิจารณาตัวอย่างใดๆ ด้วยการสร้างกราฟ รูปภาพจะช่วยให้เราสามารถแสดงรูปร่างที่ซับซ้อนเป็นการรวมตัวกันของรูปร่างที่เรียบง่ายกว่า หากการสร้างกราฟและตัวเลขบนกราฟเหล่านี้ทำให้คุณลำบาก คุณสามารถศึกษาหัวข้อเกี่ยวกับฟังก์ชันพื้นฐานเบื้องต้น การเปลี่ยนแปลงทางเรขาคณิตของกราฟของฟังก์ชัน และการสร้างกราฟในขณะที่ศึกษาฟังก์ชันได้

ตัวอย่างที่ 1

มีความจำเป็นต้องกำหนดพื้นที่ของรูปซึ่งถูกจำกัดด้วยพาราโบลา y = - x 2 + 6 x - 5 และเส้นตรง y = - 1 3 x - 1 2, x = 1, x = 4

สารละลาย

ลองวาดเส้นบนกราฟในระบบพิกัดคาร์ทีเซียนกัน

ในส่วน [ 1 ; 4 ] กราฟของพาราโบลา y = - x 2 + 6 x - 5 อยู่เหนือเส้นตรง y = - 1 3 x - 1 2 ในเรื่องนี้เพื่อให้ได้คำตอบเราใช้สูตรที่ได้รับมาก่อนหน้านี้ตลอดจนวิธีคำนวณอินทิกรัลจำกัดเขตโดยใช้สูตรของนิวตัน-ไลบ์นิซ:

S (G) = ∫ 1 4 - x 2 + 6 x - 5 - - 1 3 x - 1 2 d x = = ∫ 1 4 - x 2 + 19 3 x - 9 2 d x = - 1 3 x 3 + 19 6 x 2 - 9 2 x 1 4 = = - 1 3 4 3 + 19 6 4 2 - 9 2 4 - - 1 3 1 3 + 19 6 1 2 - 9 2 1 = = - 64 3 + 152 3 - 18 + 1 3 - 19 6 + 9 2 = 13

คำตอบ: S(G) = 13

ลองดูตัวอย่างที่ซับซ้อนกว่านี้

ตัวอย่างที่ 2

จำเป็นต้องคำนวณพื้นที่ของรูปซึ่งถูกจำกัดด้วยเส้น y = x + 2, y = x, x = 7

สารละลาย

ในกรณีนี้ เรามีเส้นตรงเพียงเส้นเดียวที่ขนานกับแกน x นี่คือ x = 7 สิ่งนี้ทำให้เราต้องค้นหาขีดจำกัดที่สองของการบูรณาการด้วยตัวเราเอง

มาสร้างกราฟและพลอตเส้นที่กำหนดในคำสั่งปัญหากันดีกว่า

เมื่อกราฟปรากฏต่อหน้าต่อตา เราจะระบุได้อย่างง่ายดายว่าขีดจำกัดล่างของอินทิเกรตจะเป็นจุดตัดของกราฟของเส้นตรง y = x และกึ่งพาราโบลา y = x + 2 ในการค้นหา abscissa เราใช้ความเท่าเทียมกัน:

y = x + 2 O DZ: x ≥ - 2 x 2 = x + 2 2 x 2 - x - 2 = 0 D = (- 1) 2 - 4 1 (- 2) = 9 x 1 = 1 + 9 2 = 2 ∈ O DZ x 2 = 1 - 9 2 = - 1 ∉ O DZ

ปรากฎว่า abscissa ของจุดตัดคือ x = 2

เราดึงความสนใจของคุณไปที่ความจริงที่ว่าใน ตัวอย่างทั่วไปในการวาดเส้น y = x + 2, y = x ตัดกันที่จุด (2; 2) ดังนั้น การคำนวณโดยละเอียดอาจดูเหมือนไม่จำเป็น เรานำสิ่งนี้มาที่นี่ วิธีแก้ปัญหาโดยละเอียดเพียงเพราะมีมากกว่านี้ กรณีที่ยากลำบากวิธีแก้ปัญหาอาจไม่ชัดเจนนัก ซึ่งหมายความว่าจะเป็นการดีกว่าที่จะคำนวณพิกัดของจุดตัดของเส้นในเชิงวิเคราะห์เสมอ

ในช่วงเวลา [ 2 ; 7] กราฟของฟังก์ชัน y = x อยู่เหนือกราฟของฟังก์ชัน y = x + 2 ลองใช้สูตรคำนวณพื้นที่:

ส (G) = ∫ 2 7 (x - x + 2) d x = x 2 2 - 2 3 · (x + 2) 3 2 2 7 = = 7 2 2 - 2 3 · (7 + 2) 3 2 - 2 2 2 - 2 3 2 + 2 3 2 = = 49 2 - 18 - 2 + 16 3 = 59 6

ตอบ: ส (ช) = 59 6

ตัวอย่างที่ 3

จำเป็นต้องคำนวณพื้นที่ของรูปซึ่งถูกจำกัดด้วยกราฟของฟังก์ชัน y = 1 x และ y = - x 2 + 4 x - 2

สารละลาย

เรามาพลอตเส้นบนกราฟกัน

เรามากำหนดขอบเขตของการบูรณาการกันดีกว่า ในการทำเช่นนี้เราจะกำหนดพิกัดของจุดตัดกันของเส้นโดยจัดให้นิพจน์ 1 x และ - x 2 + 4 x - 2 เท่ากัน โดยมีเงื่อนไขว่า x ไม่เป็นศูนย์ ความเท่าเทียมกัน 1 x = - x 2 + 4 x - 2 จะเทียบเท่ากับสมการระดับที่สาม - x 3 + 4 x 2 - 2 x - 1 = 0 พร้อมสัมประสิทธิ์จำนวนเต็ม หากต้องการรีเฟรชหน่วยความจำเกี่ยวกับอัลกอริทึมในการแก้สมการดังกล่าว โปรดดูหัวข้อ "การแก้สมการกำลังสาม"

รากของสมการนี้คือ x = 1: - 1 3 + 4 1 2 - 2 1 - 1 = 0

เมื่อหารนิพจน์ - x 3 + 4 x 2 - 2 x - 1 ด้วยทวินาม x - 1 เราจะได้: - x 3 + 4 x 2 - 2 x - 1 ⇔ - (x - 1) (x 2 - 3 x - 1) = 0

เราสามารถหารากที่เหลือได้จากสมการ x 2 - 3 x - 1 = 0:

x 2 - 3 x - 1 = 0 D = (- 3) 2 - 4 · 1 · (- 1) = 13 x 1 = 3 + 13 2 หยาบคาย 3 . 3; x 2 = 3 - 13 2 µ - 0 . 3

เราพบช่วงเวลา x ∈ 1; 3 + 13 2 โดยรูป G อยู่เหนือเส้นสีน้ำเงินและใต้เส้นสีแดง สิ่งนี้ช่วยให้เรากำหนดพื้นที่ของรูปได้:

S (G) = ∫ 1 3 + 13 2 - x 2 + 4 x - 2 - 1 x d x = - x 3 3 + 2 x 2 - 2 x - ln x 1 3 + 13 2 = = - 3 + 13 2 3 3 + 2 3 + 13 2 2 - 2 3 + 13 2 - อิน 3 + 13 2 - - - 1 3 3 + 2 1 2 - 2 1 - อิน 1 = 7 + 13 3 - อิน 3 + 13 2

คำตอบ: S (G) = 7 + 13 3 - ln 3 + 13 2

ตัวอย่างที่ 4

จำเป็นต้องคำนวณพื้นที่ของรูปซึ่งถูกจำกัดด้วยเส้นโค้ง y = x 3, y = - log 2 x + 1 และแกน abscissa

สารละลาย

ลองพลอตเส้นทั้งหมดบนกราฟกัน เราจะได้กราฟของฟังก์ชัน y = - log 2 x + 1 จากกราฟ y = log 2 x ถ้าเราวางตำแหน่งมันอย่างสมมาตรรอบแกน x แล้วเลื่อนขึ้นไปหนึ่งหน่วย สมการของแกน x คือ y = 0

ให้เราทำเครื่องหมายจุดตัดของเส้น

ดังที่เห็นได้จากรูป กราฟของฟังก์ชัน y = x 3 และ y = 0 ตัดกันที่จุด (0; 0) สิ่งนี้เกิดขึ้นเพราะ x = 0 เป็นรากที่แท้จริงเพียงรากเดียวของสมการ x 3 = 0

x = 2 เป็นรากเดียวของสมการ - log 2 x + 1 = 0 ดังนั้นกราฟของฟังก์ชัน y = - log 2 x + 1 และ y = 0 ตัดกันที่จุด (2; 0)

x = 1 เป็นรากเดียวของสมการ x 3 = - log 2 x + 1 ในเรื่องนี้กราฟของฟังก์ชัน y = x 3 และ y = - log 2 x + 1 ตัดกันที่จุด (1; 1) ข้อความสุดท้ายอาจไม่ชัดเจน แต่สมการ x 3 = - log 2 x + 1 ไม่สามารถมีมากกว่าหนึ่งรูทได้เนื่องจากฟังก์ชัน y = x 3 เพิ่มขึ้นอย่างเคร่งครัดและฟังก์ชัน y = - log 2 x + 1 คือ ลดลงอย่างเคร่งครัด

แนวทางแก้ไขเพิ่มเติมเกี่ยวข้องกับหลายตัวเลือก

ตัวเลือกที่ 1

เราสามารถจินตนาการได้ว่ารูป G เป็นผลรวมของสี่เหลี่ยมคางหมูโค้งสองอันที่อยู่เหนือแกน x โดยอันแรกอยู่ใต้เส้นกึ่งกลางของส่วน x ∈ 0; 1 และอันที่สองอยู่ใต้เส้นสีแดงบนส่วน x ∈ 1; 2. ซึ่งหมายความว่าพื้นที่จะเท่ากับ S (G) = ∫ 0 1 x 3 d x + ∫ 1 2 (- log 2 x + 1) d x

ตัวเลือกหมายเลข 2

รูปที่ G สามารถแสดงเป็นผลต่างของตัวเลขสองตัว โดยตัวแรกจะอยู่เหนือแกน x และต่ำกว่าเส้นสีน้ำเงินบนส่วน x ∈ 0; 2 และเส้นที่สองระหว่างเส้นสีแดงและสีน้ำเงินบนส่วน x ∈ 1; 2. ทำให้เราสามารถหาพื้นที่ได้ดังนี้

S (G) = ∫ 0 2 x 3 d x - ∫ 1 2 x 3 - (- บันทึก 2 x + 1) d x

ในกรณีนี้หากต้องการค้นหาพื้นที่คุณจะต้องใช้สูตรในรูปแบบ S (G) = ∫ c d (g 2 (y) - g 1 (y)) d y ในความเป็นจริง เส้นที่ผูกรูปสามารถแสดงเป็นฟังก์ชันของอาร์กิวเมนต์ y ได้

มาแก้สมการ y = x 3 และ - log 2 x + 1 เทียบกับ x:

y = x 3 ⇒ x = y 3 y = - บันทึก 2 x + 1 ⇒ บันทึก 2 x = 1 - y ⇒ x = 2 1 - y

เราได้รับพื้นที่ที่ต้องการ:

S (G) = ∫ 0 1 (2 1 - y - y 3) d y = - 2 1 - y ln 2 - y 4 4 0 1 = = - 2 1 - 1 ln 2 - 1 4 4 - - 2 1 - 0 อิน 2 - 0 4 4 = - 1 อิน 2 - 1 4 + 2 อิน 2 = 1 อิน 2 - 1 4

คำตอบ: S (G) = 1 ln 2 - 1 4

ตัวอย่างที่ 5

จำเป็นต้องคำนวณพื้นที่ของรูปซึ่งถูกจำกัดด้วยเส้น y = x, y = 2 3 x - 3, y = - 1 2 x + 4

สารละลาย

ด้วยเส้นสีแดง เราพล็อตเส้นที่กำหนดโดยฟังก์ชัน y = x เราวาดเส้น y = - 1 2 x + 4 เป็นสีน้ำเงิน และเส้น y = 2 3 x - 3 เป็นสีดำ

ลองทำเครื่องหมายจุดตัดกัน

มาหาจุดตัดของกราฟของฟังก์ชัน y = x และ y = - 1 2 x + 4:

x = - 1 2 x + 4 O DZ: x ≥ 0 x = - 1 2 x + 4 2 ⇒ x = 1 4 x 2 - 4 x + 16 ⇔ x 2 - 20 x + 64 = 0 D = (- 20 ) 2 - 4 1 64 = 144 x 1 = 20 + 144 2 = 16 ; x 2 = 20 - 144 2 = 4 ตรวจสอบ: x 1 = 16 = 4, - 1 2 x 1 + 4 = - 1 2 16 + 4 = - 4 ⇒ x 1 = 16 ไม่ใช่ คือคำตอบของสมการ x 2 = 4 = 2, - 1 2 x 2 + 4 = - 1 2 4 + 4 = 2 ⇒ x 2 = 4 คือคำตอบของสมการ ⇒ (4; 2) จุดตัดกัน i y = x และ y = - 1 2 x + 4

มาหาจุดตัดของกราฟของฟังก์ชัน y = x และ y = 2 3 x - 3:

x = 2 3 x - 3 O DZ: x ≥ 0 x = 2 3 x - 3 2 ⇔ x = 4 9 x 2 - 4 x + 9 ⇔ 4 x 2 - 45 x + 81 = 0 D = (- 45 ) 2 - 4 4 81 = 729 x 1 = 45 + 729 8 = 9, x 2 45 - 729 8 = 9 4 ตรวจสอบ: x 1 = 9 = 3, 2 3 x 1 - 3 = 2 3 9 - 3 = 3 ⇒ x 1 = 9 คือคำตอบของสมการ ⇒ (9 ; 3) ชี้ a s y = x และ y = 2 3 x - 3 x 2 = 9 4 = 3 2, 2 3 x 1 - 3 = 2 3 9 4 - 3 = - 3 2 ⇒ x 2 = 9 4 ไม่มีคำตอบของสมการ

มาหาจุดตัดของเส้นตรง y = - 1 2 x + 4 และ y = 2 3 x - 3:

1 2 x + 4 = 2 3 x - 3 ⇔ - 3 x + 24 = 4 x - 18 ⇔ 7 x = 42 ⇔ x = 6 - 1 2 6 + 4 = 2 3 6 - 3 = 1 ⇒ (6 ; 1 ) จุดตัดกัน y = - 1 2 x + 4 และ y = 2 3 x - 3

วิธีที่ 1

ลองจินตนาการถึงพื้นที่ของรูปที่ต้องการเป็นผลรวมของพื้นที่ของรูปแต่ละรูป

จากนั้นพื้นที่ของรูปคือ:

เอส (G) = ∫ 4 6 x - - 1 2 x + 4 d x + ∫ 6 9 x - 2 3 x - 3 d x = = 2 3 x 3 2 + x 2 4 - 4 x 4 6 + 2 3 x 3 2 - x 2 3 + 3 x 6 9 = = 2 3 6 3 2 + 6 2 4 - 4 6 - 2 3 4 3 2 + 4 2 4 - 4 4 + + 2 3 9 3 2 - 9 2 3 + 3 9 - 2 3 6 3 2 - 6 2 3 + 3 6 = = - 25 3 + 4 6 + - 4 6 + 12 = 11 3

วิธีที่ 2

พื้นที่ของรูปเดิมสามารถแสดงเป็นผลรวมของรูปอีกสองรูปได้

จากนั้นเราจะแก้สมการของเส้นตรงที่สัมพันธ์กับ x และหลังจากนั้นเราก็ใช้สูตรในการคำนวณพื้นที่ของรูป

y = x ⇒ x = y 2 เส้นสีแดง y = 2 3 x - 3 ⇒ x = 3 2 y + 9 2 เส้นสีดำ y = - 1 2 x + 4 ⇒ x = - 2 y + 8 s i n i a l i n e

ดังนั้นพื้นที่คือ:

S (G) = ∫ 1 2 3 2 ปี + 9 2 - - 2 ปี + 8 วัน + ∫ 2 3 3 2 ปี + 9 2 - ปี 2 วัน y = = ∫ 1 2 7 2 ปี - 7 2 วัน + ∫ 2 3 3 2 ปี + 9 2 - ปี 2 วัน = = 7 4 ปี 2 - 7 4 ปี 1 2 + - ปี 3 3 + 3 ปี 2 4 + 9 2 ปี 2 3 = 7 4 2 2 - 7 4 2 - 7 4 1 2 - 7 4 1 + + - 3 3 3 + 3 3 2 4 + 9 2 3 - - 2 3 3 + 3 2 2 4 + 9 2 2 = = 7 4 + 23 12 = 11 3

อย่างที่คุณเห็นค่าจะเท่ากัน

คำตอบ: S (G) = 11 3

ผลลัพธ์

ในการหาพื้นที่ของรูปที่ถูกจำกัดด้วยเส้นที่กำหนด เราจำเป็นต้องสร้างเส้นบนระนาบ ค้นหาจุดตัดของมัน และใช้สูตรเพื่อค้นหาพื้นที่ ใน ส่วนนี้เราพิจารณาปัญหาต่างๆ ที่พบบ่อยที่สุด

หากคุณสังเกตเห็นข้อผิดพลาดในข้อความ โปรดไฮไลต์แล้วกด Ctrl+Enter

ปล่อยให้ฟังก์ชันไม่เป็นลบและต่อเนื่องตามช่วงเวลา จากนั้นตามความหมายทางเรขาคณิตของอินทิกรัลจำกัด พื้นที่ของสี่เหลี่ยมคางหมูโค้งที่ล้อมรอบด้วยกราฟของฟังก์ชันนี้ ด้านล่างของแกน ทางซ้ายและขวาด้วยเส้นตรง และ (ดูรูปที่ 2) คือ คำนวณโดยสูตร

ตัวอย่างที่ 9 ค้นหาพื้นที่ของภาพที่ล้อมรอบด้วยเส้นตรง และแกน

สารละลาย- กราฟฟังก์ชัน คือพาราโบลาที่มีกิ่งก้านชี้ลง มาสร้างมันกันเถอะ (รูปที่ 3) เพื่อกำหนดขีดจำกัดของอินทิเกรต เราจะหาจุดตัดกันของเส้นตรง (พาราโบลา) กับแกน (เส้นตรง) เมื่อต้องการทำเช่นนี้ เราต้องแก้ระบบสมการ

เราได้รับ: , ที่ไหน , ; เพราะฉะนั้น, , .

ข้าว. 3

เราค้นหาพื้นที่ของรูปโดยใช้สูตร (5):

หากฟังก์ชันไม่เป็นค่าบวกและต่อเนื่องบนเซ็กเมนต์ พื้นที่ของเส้นโค้งรูปสี่เหลี่ยมคางหมูโค้งที่ล้อมรอบด้วยกราฟของฟังก์ชันนี้ด้านล่าง เหนือแกน ด้านซ้ายและด้านขวาด้วยเส้นตรง และ คำนวณโดย สูตร

. (6)

หากฟังก์ชันต่อเนื่องบนเซกเมนต์และเปลี่ยนเครื่องหมายตามจำนวนจุดที่กำหนด พื้นที่ของรูปที่แรเงา (รูปที่ 4) จะเท่ากับ ผลรวมพีชคณิตอินทิกรัลที่แน่นอนที่สอดคล้องกัน:

ข้าว. 4

ตัวอย่างที่ 10 คำนวณพื้นที่ของรูปที่ล้อมรอบด้วยแกนและกราฟของฟังก์ชันที่ .

ข้าว. 5

สารละลาย- มาวาดรูปกันเถอะ (รูปที่ 5) พื้นที่ที่ต้องการคือผลรวมของพื้นที่และ เรามาค้นหาแต่ละพื้นที่เหล่านี้กัน ขั้นแรก เรากำหนดขีดจำกัดของการบูรณาการโดยการแก้ระบบ เราได้รับ , . เพราะฉะนั้น:

;

.

ดังนั้น พื้นที่ของร่างที่แรเงาคือ

(ตร.หน่วย)

ข้าว. 6

สุดท้าย ปล่อยให้เส้นโค้งรูปสี่เหลี่ยมคางหมูโค้งด้านบนและด้านล่างด้วยกราฟของฟังก์ชันที่ต่อเนื่องกันบนเซกเมนต์ และ ,
และทางซ้ายและขวา - เส้นตรง และ (รูปที่ 6) จากนั้นพื้นที่ของมันจะคำนวณตามสูตร



. (8)

ตัวอย่างที่ 11 ค้นหาพื้นที่ของภาพที่ล้อมรอบด้วยเส้นและ

สารละลาย.รูปนี้แสดงไว้ในรูปที่ 7. ลองคำนวณพื้นที่โดยใช้สูตร (8) การแก้ระบบสมการที่เราพบ ; เพราะฉะนั้น, , . ในส่วนนี้เรามี: . ซึ่งหมายความว่าในสูตร (8) เราถือเป็น xและในด้านคุณภาพ – . เราได้รับ:

(ตร.หน่วย)

ปัญหาการคำนวณพื้นที่ที่ซับซ้อนมากขึ้นได้รับการแก้ไขโดยการแบ่งตัวเลขออกเป็นส่วนที่ไม่ทับซ้อนกันและคำนวณพื้นที่ของร่างทั้งหมดเป็นผลรวมของพื้นที่ของส่วนเหล่านี้

ข้าว. 7

ตัวอย่างที่ 12. จงหาพื้นที่ของรูปที่ล้อมรอบด้วยเส้น , , .

สารละลาย- มาวาดรูปกันเถอะ (รูปที่ 8) ตัวเลขนี้ถือได้ว่าเป็นรูปทรงสี่เหลี่ยมคางหมูโค้งซึ่งล้อมรอบด้วยแกนจากด้านล่างไปทางซ้ายและขวา - เป็นเส้นตรงและจากด้านบน - ด้วยกราฟของฟังก์ชันและ เนื่องจากตัวเลขถูกจำกัดจากด้านบนด้วยกราฟของสองฟังก์ชัน ในการคำนวณพื้นที่ เราจึงแบ่งรูปเส้นตรงนี้ออกเป็นสองส่วน (1 คือจุดหักล้างของจุดตัดกันของเส้น และ ) พบพื้นที่ของแต่ละส่วนโดยใช้สูตร (4):

(ตร.หน่วย); (ตร.หน่วย) เพราะฉะนั้น:

(ตร.หน่วย)

ข้าว. 8

เอ็กซ์= เจ ( ที่)

ข้าว. 9

โดยสรุป เราทราบว่าหากรูปสี่เหลี่ยมคางหมูเส้นโค้งถูกจำกัดด้วยเส้นตรง และ , แกน และต่อเนื่องบนเส้นโค้ง (รูปที่ 9) สูตรจะพบพื้นที่ของมันคือ

ปริมาณของร่างแห่งการปฏิวัติ

ปล่อยให้เส้นโค้งสี่เหลี่ยมคางหมูล้อมรอบด้วยกราฟของฟังก์ชันต่อเนื่องบนส่วนโดยแกนโดยเส้นตรงและ , หมุนรอบแกน (รูปที่ 10) จากนั้นปริมาตรของการหมุนที่เกิดขึ้นจะถูกคำนวณโดยสูตร

. (9)

ตัวอย่างที่ 13 คำนวณปริมาตรของวัตถุที่ได้จากการหมุนรอบแกนของรูปทรงสี่เหลี่ยมคางหมูส่วนโค้งที่ล้อมรอบด้วยไฮเพอร์โบลา เส้นตรง และแกน

สารละลาย- มาวาดรูปกันเถอะ (รูปที่ 11)

จากเงื่อนไขของปัญหามีดังนี้ . จากสูตร (9) เราได้

.

ข้าว. 10

ข้าว. สิบเอ็ด

ปริมาตรของวัตถุที่ได้จากการหมุนรอบแกน อู๋สี่เหลี่ยมคางหมูโค้งล้อมรอบด้วยเส้นตรง ย = คและ ย = ง, แกน อู๋และกราฟของฟังก์ชันต่อเนื่องบนเซกเมนต์ (รูปที่ 12) ซึ่งกำหนดโดยสูตร

. (10)

เอ็กซ์= เจ ( ที่)

ข้าว. 12

ตัวอย่างที่ 14 คำนวณปริมาตรของวัตถุที่ได้จากการหมุนรอบแกน อู๋สี่เหลี่ยมคางหมูโค้งล้อมรอบด้วยเส้น เอ็กซ์ 2 = 4ที่, ย = 4, x= 0 (รูปที่ 13)

สารละลาย- ตามเงื่อนไขของปัญหา เราพบขีดจำกัดของการรวม: , . การใช้สูตร (10) เราได้รับ:

ข้าว. 13

ความยาวส่วนโค้งของเส้นโค้งระนาบ

ปล่อยให้เส้นโค้งที่กำหนดโดยสมการ ที่ไหน อยู่ในระนาบ (รูปที่ 14)

ข้าว. 14

คำนิยาม. ความยาวของส่วนโค้งเป็นที่เข้าใจกันว่าเป็นขีดจำกัดของความยาวของเส้นขาดที่จารึกไว้ในส่วนโค้งนี้ เมื่อจำนวนลิงก์ของเส้นขาดมีแนวโน้มที่จะไม่สิ้นสุด และความยาวของลิงก์ที่ใหญ่ที่สุดมีแนวโน้มเป็นศูนย์

หากฟังก์ชันและอนุพันธ์ของฟังก์ชันต่อเนื่องกันบนเซ็กเมนต์ ความยาวส่วนโค้งของเส้นโค้งจะถูกคำนวณโดยสูตร

. (11)

ตัวอย่างที่ 15 คำนวณความยาวส่วนโค้งของเส้นโค้งที่อยู่ระหว่างจุดนั้น .

สารละลาย- จากสภาพปัญหาที่เรามี - การใช้สูตร (11) เราได้รับ:

.

4. อินทิกรัลที่ไม่เหมาะสม
ด้วยขีดจำกัดของการบูรณาการที่ไม่สิ้นสุด

เมื่อแนะนำแนวคิดเกี่ยวกับอินทิกรัลจำกัดเขต สันนิษฐานว่าตรงตามเงื่อนไขสองข้อต่อไปนี้:

ก) ข้อจำกัดของการบูรณาการ และมีขอบเขต;

b) อินทิเกรนมีขอบเขตตามช่วงเวลา

หากเงื่อนไขเหล่านี้อย่างน้อยหนึ่งเงื่อนไขไม่เป็นที่พอใจ ก็จะเรียกอินทิกรัล ไม่ใช่ของคุณเอง.

ก่อนอื่นให้เราพิจารณาอินทิกรัลที่ไม่เหมาะสมโดยมีขีดจำกัดอินทิเกรตไม่จำกัด

คำนิยาม. ให้ฟังก์ชันถูกกำหนดและต่อเนื่องตามช่วงเวลาแล้วและไม่จำกัดทางด้านขวา (รูปที่ 15)

หากอินทิกรัลที่ไม่เหมาะสมมาบรรจบกัน พื้นที่นี้ก็มีขอบเขตจำกัด ถ้าอินทิกรัลที่ไม่เหมาะสมเบี่ยงเบนไป พื้นที่นี้จะไม่มีที่สิ้นสุด

ข้าว. 15

อินทิกรัลที่ไม่เหมาะสมซึ่งมีขีดจำกัดล่างของการอินทิเกรตเป็นอนันต์ถูกกำหนดไว้ในลักษณะเดียวกัน:

. (13)

อินทิกรัลนี้มาบรรจบกันถ้ามีขีดจำกัดทางด้านขวาของความเสมอภาค (13) อยู่และมีจำนวนจำกัด มิฉะนั้นอินทิกรัลจะกล่าวได้ว่าลู่ออก

อินทิกรัลที่ไม่เหมาะสมซึ่งมีขีดจำกัดอินทิเกรตอนันต์สองอันถูกกำหนดไว้ดังนี้:

, (14)

โดยที่ с คือจุดใดๆ ของช่วงเวลา อินทิกรัลมาบรรจบกันก็ต่อเมื่ออินทิกรัลทั้งสองทางด้านขวาของค่าเท่ากัน (14) มาบรรจบกัน

;

ช) = [เลือกกำลังสองที่สมบูรณ์ในตัวส่วน: ] = [แทนที่:

] =

ซึ่งหมายความว่าอินทิกรัลที่ไม่เหมาะสมมาบรรจบกันและมีค่าเท่ากับ

วิธีการใส่ สูตรทางคณิตศาสตร์ไปที่เว็บไซต์?

หากคุณต้องการเพิ่มสูตรทางคณิตศาสตร์หนึ่งหรือสองสูตรลงในหน้าเว็บวิธีที่ง่ายที่สุดในการทำเช่นนี้คือตามที่อธิบายไว้ในบทความ: สูตรทางคณิตศาสตร์จะถูกแทรกลงบนไซต์ได้อย่างง่ายดายในรูปแบบของรูปภาพที่สร้างโดย Wolfram Alpha โดยอัตโนมัติ . นอกจากความเรียบง่ายแล้ว วิธีการสากลนี้ยังช่วยปรับปรุงการมองเห็นไซต์ด้วย เครื่องมือค้นหา- มันใช้งานได้มาเป็นเวลานาน (และฉันคิดว่าจะใช้ได้ตลอดไป) แต่ก็ล้าสมัยไปแล้ว

หากคุณใช้สูตรทางคณิตศาสตร์บนเว็บไซต์ของคุณอย่างต่อเนื่อง ฉันขอแนะนำให้คุณใช้ MathJax - ไลบรารี JavaScript พิเศษที่แสดง สัญกรณ์ทางคณิตศาสตร์ในเว็บเบราว์เซอร์ที่ใช้มาร์กอัป MathML, LaTeX หรือ ASCIIMathML

มีสองวิธีในการเริ่มใช้ MathJax: (1) การใช้โค้ดง่ายๆ คุณสามารถเชื่อมต่อสคริปต์ MathJax กับเว็บไซต์ของคุณได้อย่างรวดเร็ว ซึ่งจะถูกโหลดโดยอัตโนมัติจากเซิร์ฟเวอร์ระยะไกลในเวลาที่เหมาะสม (รายชื่อเซิร์ฟเวอร์); (2) ดาวน์โหลดสคริปต์ MathJax จากเซิร์ฟเวอร์ระยะไกลไปยังเซิร์ฟเวอร์ของคุณและเชื่อมต่อกับทุกหน้าในเว็บไซต์ของคุณ วิธีที่สอง - ซับซ้อนกว่าและใช้เวลานาน - จะทำให้การโหลดหน้าเว็บไซต์ของคุณเร็วขึ้น และหากเซิร์ฟเวอร์ MathJax หลักไม่สามารถใช้งานได้ชั่วคราวด้วยเหตุผลบางประการ สิ่งนี้จะไม่ส่งผลกระทบต่อไซต์ของคุณในทางใดทางหนึ่ง แม้จะมีข้อดีเหล่านี้ แต่ฉันเลือกวิธีแรกเนื่องจากง่ายกว่า เร็วกว่า และไม่ต้องใช้ทักษะทางเทคนิค ทำตามตัวอย่างของฉัน และในเวลาเพียง 5 นาที คุณจะสามารถใช้ฟีเจอร์ทั้งหมดของ MathJax บนไซต์ของคุณได้

คุณสามารถเชื่อมต่อสคริปต์ไลบรารี MathJax จากเซิร์ฟเวอร์ระยะไกลได้โดยใช้ตัวเลือกโค้ดสองตัวที่นำมาจากเว็บไซต์ MathJax หลักหรือบนหน้าเอกสารประกอบ:

หนึ่งในตัวเลือกโค้ดเหล่านี้จำเป็นต้องคัดลอกและวางลงในโค้ดของหน้าเว็บของคุณ โดยควรอยู่ระหว่างแท็กและหรืออยู่หลังแท็ก ตามตัวเลือกแรก MathJax จะโหลดเร็วขึ้นและทำให้หน้าช้าลง แต่ตัวเลือกที่สองจะติดตามและโหลดโดยอัตโนมัติ เวอร์ชันล่าสุดแมทแจ็กซ์. หากคุณใส่รหัสแรก จะต้องได้รับการอัปเดตเป็นระยะ หากคุณใส่โค้ดที่สอง หน้าเว็บจะโหลดช้าลง แต่คุณไม่จำเป็นต้องติดตามการอัปเดต MathJax อย่างต่อเนื่อง

วิธีที่ง่ายที่สุดในการเชื่อมต่อ MathJax คือใน Blogger หรือ WordPress: ในแผงควบคุมไซต์ ให้เพิ่มวิดเจ็ตที่ออกแบบมาเพื่อแทรกโค้ด JavaScript บุคคลที่สาม คัดลอกโค้ดดาวน์โหลดเวอร์ชันแรกหรือเวอร์ชันที่สองที่แสดงด้านบนลงไป และวางวิดเจ็ตไว้ใกล้ยิ่งขึ้น ไปที่จุดเริ่มต้นของเทมเพลต (โดยวิธีนี้ไม่จำเป็นเลย เนื่องจากสคริปต์ MathJax ถูกโหลดแบบอะซิงโครนัส) นั่นคือทั้งหมดที่ ตอนนี้เรียนรู้ไวยากรณ์มาร์กอัปของ MathML, LaTeX และ ASCIIMathML แล้วคุณก็พร้อมที่จะแทรกสูตรทางคณิตศาสตร์ลงในหน้าเว็บของเว็บไซต์ของคุณแล้ว

แฟร็กทัลใดๆ ก็ตามจะถูกสร้างขึ้นตามกฎเกณฑ์หนึ่ง ซึ่งใช้อย่างสม่ำเสมอโดยไม่จำกัดจำนวนครั้ง แต่ละครั้งดังกล่าวเรียกว่าการวนซ้ำ

อัลกอริธึมการวนซ้ำสำหรับการสร้างฟองน้ำ Menger นั้นค่อนข้างง่าย: ลูกบาศก์ดั้งเดิมที่มีด้าน 1 จะถูกแบ่งด้วยระนาบที่ขนานกับใบหน้าออกเป็น 27 ลูกบาศก์เท่า ๆ กัน ลูกบาศก์กลางหนึ่งลูกบาศก์และลูกบาศก์ 6 ก้อนที่อยู่ติดกันตามใบหน้าจะถูกลบออกจากมัน ผลลัพธ์ที่ได้คือชุดที่ประกอบด้วยลูกบาศก์ขนาดเล็กกว่า 20 ลูกบาศก์ที่เหลือ เมื่อทำเช่นเดียวกันกับแต่ละลูกบาศก์ เราจะได้ชุดที่ประกอบด้วยลูกบาศก์ขนาดเล็กกว่า 400 ลูกบาศก์ ดำเนินกระบวนการนี้ต่อไปอย่างไม่มีที่สิ้นสุด เราได้ฟองน้ำ Menger

ในบทความนี้คุณจะได้เรียนรู้วิธีค้นหาพื้นที่ของตัวเลขที่ล้อมรอบด้วยเส้นโดยใช้การคำนวณอินทิกรัล เป็นครั้งแรกที่เราเผชิญกับการกำหนดปัญหาดังกล่าวในโรงเรียนมัธยมปลาย เมื่อเราเพิ่งเสร็จสิ้นการศึกษาอินทิกรัลจำกัดขอบเขต และถึงเวลาที่จะเริ่มการตีความทางเรขาคณิตของความรู้ที่ได้รับในทางปฏิบัติ

ดังนั้นสิ่งที่จำเป็นในการแก้ปัญหาการค้นหาพื้นที่ของรูปโดยใช้อินทิกรัล:

  • ความสามารถในการเขียนแบบที่มีความสามารถ
  • ความสามารถในการแก้โจทย์อินทิกรัลที่แน่นอนโดยใช้ สูตรดังนิวตัน-ไลบ์นิซ;
  • ความสามารถในการ "เห็น" ตัวเลือกโซลูชันที่ให้ผลกำไรมากขึ้น - เช่น เข้าใจว่าการดำเนินการบูรณาการในกรณีใดกรณีหนึ่งจะสะดวกกว่าอย่างไร ตามแนวแกน x (OX) หรือแกน y (OY)?
  • แล้วเราจะอยู่ที่ไหนถ้าไม่มีการคำนวณที่ถูกต้อง?) ซึ่งรวมถึงการทำความเข้าใจวิธีแก้อินทิกรัลประเภทอื่นและการคำนวณตัวเลขที่ถูกต้อง

อัลกอริทึมในการแก้ปัญหาการคำนวณพื้นที่ของรูปที่ล้อมรอบด้วยเส้น:

1. เราสร้างภาพวาด ขอแนะนำให้ทำเช่นนี้บนกระดาษตาหมากรุกในขนาดใหญ่ เราเซ็นชื่อของฟังก์ชันนี้ด้วยดินสอเหนือแต่ละกราฟ การลงนามกราฟจะทำเพื่อความสะดวกในการคำนวณเพิ่มเติมเท่านั้น เมื่อได้รับกราฟของตัวเลขที่ต้องการแล้ว ในกรณีส่วนใหญ่จะชัดเจนทันทีว่าจะใช้ขีดจำกัดการรวมแบบใด ดังนั้นเราจึงแก้ปัญหาแบบกราฟิก อย่างไรก็ตาม มันเกิดขึ้นที่ค่าของขีดจำกัดนั้นเป็นเศษส่วนหรือไม่มีเหตุผล ดังนั้นคุณก็สามารถทำได้ การคำนวณเพิ่มเติมให้ไปยังขั้นตอนที่สอง

2. หากไม่ได้ระบุขีดจำกัดของการอินทิเกรตไว้อย่างชัดเจน เราจะค้นหาจุดตัดกันของกราฟด้วยกัน และดูว่าโซลูชันกราฟิกของเราเกิดขึ้นพร้อมกับการวิเคราะห์หรือไม่

3. ถัดไปคุณต้องวิเคราะห์ภาพวาด มีวิธีการต่างๆ ในการค้นหาพื้นที่ของรูป ทั้งนี้ขึ้นอยู่กับวิธีการจัดเรียงกราฟฟังก์ชัน ลองพิจารณาดู ตัวอย่างที่แตกต่างกันการหาพื้นที่ของรูปโดยใช้อินทิกรัล

3.1. ปัญหาที่คลาสสิกและง่ายที่สุดคือเมื่อคุณต้องการหาพื้นที่ของสี่เหลี่ยมคางหมูโค้ง สี่เหลี่ยมคางหมูโค้งคืออะไร? นี่คือรูปแบนที่ถูกจำกัดด้วยแกน x (y = 0), เส้นตรง x = a, x = b และเส้นโค้งใดๆ ที่ต่อเนื่องกันในช่วงจาก a ถึง b นอกจากนี้ ตัวเลขนี้ไม่เป็นลบและไม่ต่ำกว่าแกน x ในกรณีนี้พื้นที่ของสี่เหลี่ยมคางหมูโค้งเป็นตัวเลขเท่ากับอินทิกรัลที่แน่นอนซึ่งคำนวณโดยใช้สูตรของนิวตัน-ไลบ์นิซ:

ตัวอย่างที่ 1 y = x2 – 3x + 3, x = 1, x = 3, y = 0

รูปนี้ล้อมรอบด้วยเส้นอะไร? เรามีพาราโบลา y = x2 - 3x + 3 ซึ่งอยู่เหนือแกน OX ไม่เป็นลบเพราะว่า ทุกจุดของพาราโบลานี้มี ค่าบวก- นอกจากนี้ จะได้รับเส้นตรง x = 1 และ x = 3 ซึ่งขนานกับแกนของ op-amp และเป็นเส้นแบ่งเขตของรูปด้านซ้ายและขวา y = 0 ซึ่งก็คือแกน x เช่นกัน ซึ่งจำกัดรูปจากด้านล่าง รูปที่ได้ออกมาจะเป็นสีเทา ดังที่เห็นได้จากรูปทางด้านซ้าย ในกรณีนี้ คุณสามารถเริ่มแก้ไขปัญหาได้ทันที ตรงหน้าเราเป็นตัวอย่างง่ายๆ ของสี่เหลี่ยมคางหมูโค้ง ซึ่งเราจะแก้โดยใช้สูตรของนิวตัน-ไลบ์นิซ

3.2. ในย่อหน้าที่ 3.1 ก่อนหน้า เราได้ตรวจสอบกรณีที่สี่เหลี่ยมคางหมูโค้งอยู่เหนือแกน x ทีนี้ ให้พิจารณากรณีที่เงื่อนไขของปัญหาเหมือนกัน ยกเว้นว่าฟังก์ชันอยู่ใต้แกน x เครื่องหมายลบจะถูกเพิ่มเข้าไปในสูตรมาตรฐานของนิวตัน-ไลบ์นิซ เราจะพิจารณาวิธีแก้ปัญหาดังกล่าวด้านล่าง

ตัวอย่างที่ 2- คำนวณพื้นที่ของรูปที่ล้อมรอบด้วยเส้น y = x2 + 6x + 2, x = -4, x = -1, y = 0

ใน ในตัวอย่างนี้เรามีพาราโบลา y = x2 + 6x + 2 ซึ่งมาจากใต้แกน OX เส้นตรง x = -4, x = -1, y = 0 โดยที่ y = 0 จะจำกัดตัวเลขที่ต้องการจากด้านบน เส้นตรง x = -4 และ x = -1 คือขอบเขตที่จะคำนวณอินทิกรัลจำกัดเขต หลักการแก้ปัญหาการหาพื้นที่ของรูปเกือบจะสอดคล้องกับตัวอย่างที่ 1 ข้อแตกต่างเพียงอย่างเดียวคือ ฟังก์ชันที่กำหนดไม่เป็นค่าบวก และยังคงต่อเนื่องเป็นระยะ [-4; -1] . คุณหมายถึงอะไรที่ไม่เป็นบวก? ดังที่เห็นได้จากรูป ตัวเลขที่อยู่ในค่า x ที่ให้มานั้นมีพิกัด "ลบ" โดยเฉพาะ ซึ่งเป็นสิ่งที่เราจำเป็นต้องเห็นและจดจำเมื่อแก้ไขปัญหา เราค้นหาพื้นที่ของรูปโดยใช้สูตรของนิวตัน-ไลบ์นิซโดยมีเครื่องหมายลบอยู่ที่จุดเริ่มต้นเท่านั้น

บทความยังไม่เสร็จสมบูรณ์

มาดูการประยุกต์ใช้แคลคูลัสอินทิกรัลกันต่อ ในบทนี้เราจะดูปัญหาทั่วไปและที่พบบ่อยที่สุดในการคำนวณพื้นที่ของรูปเครื่องบินโดยใช้อินทิกรัลจำกัดเขต สุดท้ายนี้ ให้ทุกคนที่แสวงหาความหมายในคณิตศาสตร์ชั้นสูงค้นพบมัน คุณไม่เคยรู้. เราจะต้องนำมันเข้ามาใกล้ในชีวิตมากขึ้น พื้นที่กระท่อมในชนบทฟังก์ชันเบื้องต้นและหาพื้นที่โดยใช้อินทิกรัลจำกัดเขต

หากต้องการเชี่ยวชาญเนื้อหาให้สำเร็จ คุณต้อง:

1) ทำความเข้าใจอินทิกรัลไม่ จำกัด อย่างน้อยในระดับกลาง ดังนั้น พวกหุ่นควรจะทำความคุ้นเคยกับบทเรียนของพระองค์ก่อน

2) สามารถใช้สูตรของนิวตัน-ไลบ์นิซและคำนวณอินทิกรัลจำกัดเขตได้ จัดให้อุ่นๆ ความสัมพันธ์ฉันมิตรด้วยอินทิกรัลจำกัดสามารถพบได้ในหน้าอินทิกรัลจำกัด ตัวอย่างการแก้ปัญหา งาน "คำนวณพื้นที่โดยใช้อินทิกรัลจำกัด" เกี่ยวข้องกับการสร้างภาพวาดเสมอ ดังนั้นความรู้และทักษะการวาดภาพของคุณจะเป็นประเด็นสำคัญเช่นกัน อย่างน้อยที่สุด คุณจะต้องสามารถสร้างเส้นตรง พาราโบลา และไฮเปอร์โบลาได้

เริ่มจากสี่เหลี่ยมคางหมูโค้งกันก่อน สี่เหลี่ยมคางหมูโค้งเป็นรูปแบนที่ล้อมรอบด้วยกราฟของฟังก์ชันบางอย่าง = (x) แกน วัวและเส้น x = ; x = .

พื้นที่ของสี่เหลี่ยมคางหมูโค้งเป็นตัวเลขเท่ากับอินทิกรัลที่แน่นอน

อินทิกรัลจำกัดจำนวนใดๆ (ที่มีอยู่) มีความหมายทางเรขาคณิตที่ดีมาก ในบทเรียนปริพันธ์กำหนด ตัวอย่างการแก้ปัญหา เราบอกว่าอินทิกรัลจำกัดจำนวนคือตัวเลข และตอนนี้ก็ถึงเวลาที่จะกล่าวอีกครั้งหนึ่ง ข้อเท็จจริงที่เป็นประโยชน์- จากมุมมองของเรขาคณิต อินทิกรัลจำกัดเขตคือ AREA นั่นคืออินทิกรัลบางอย่าง (ถ้ามี) สอดคล้องกับพื้นที่ของรูปหนึ่งทางเรขาคณิต พิจารณาอินทิกรัลจำกัดเขต

ปริพันธ์

กำหนดเส้นโค้งบนระนาบ (สามารถวาดได้หากต้องการ) และอินทิกรัลที่แน่นอนนั้นเป็นตัวเลข เท่ากับพื้นที่สี่เหลี่ยมคางหมูโค้งที่สอดคล้องกัน



ตัวอย่างที่ 1

, , , .

นี่คือคำสั่งมอบหมายงานทั่วไป จุดที่สำคัญที่สุดโซลูชั่น - การวาดภาพ นอกจากนี้ภาพวาดจะต้องถูกสร้างขึ้นอย่างถูกต้อง

เมื่อสร้างภาพวาด ฉันขอแนะนำลำดับต่อไปนี้ อันดับแรก ควรสร้างเส้นตรงทั้งหมด (ถ้ามี) จะดีกว่า จากนั้นจึงสร้างพาราโบลา ไฮเปอร์โบลา และกราฟของฟังก์ชันอื่นๆ เท่านั้น เทคนิคของการสร้างแบบ pointwise สามารถพบได้ในกราฟวัสดุอ้างอิงและคุณสมบัติของฟังก์ชันพื้นฐาน ที่นั่นคุณยังสามารถค้นหาสื่อที่มีประโยชน์มากสำหรับบทเรียนของเรา - วิธีสร้างพาราโบลาอย่างรวดเร็ว

ในปัญหานี้ วิธีแก้ไขอาจมีลักษณะเช่นนี้

มาวาดรูปกันดีกว่า (โปรดสังเกตว่าสมการ = 0 ระบุแกน วัว):

เราจะไม่แรเงาสี่เหลี่ยมคางหมูโค้ง ตรงนี้ชัดเจนว่าบริเวณใด เรากำลังพูดถึง- การแก้ปัญหายังคงดำเนินต่อไปเช่นนี้:

ในส่วน [-2; 1] กราฟฟังก์ชัน = x 2 + 2 อยู่เหนือแกน วัวนั่นเป็นเหตุผล:

คำตอบ: .

ใครมีปัญหาในการคำนวณอินทิกรัลจำกัดเขตและประยุกต์สูตรนิวตัน-ไลบ์นิซ

,

อ้างถึงการบรรยาย Definite Integral ตัวอย่างการแก้ปัญหา หลังจากงานเสร็จสิ้น จะเป็นประโยชน์เสมอที่จะดูภาพวาดและพิจารณาว่าคำตอบนั้นเป็นเรื่องจริงหรือไม่ ในกรณีนี้เรานับจำนวนเซลล์ในภาพวาด "ด้วยตา" - จะมีประมาณ 9 เซลล์ดูเหมือนว่าจะเป็นจริง ชัดเจนอย่างยิ่งว่าหากเราได้รับคำตอบ: 20 ตารางหน่วยก็ชัดเจนว่ามีข้อผิดพลาดเกิดขึ้นที่ไหนสักแห่ง - เห็นได้ชัดว่า 20 เซลล์ไม่พอดีกับตัวเลขที่เป็นปัญหา อย่างน้อยที่สุดก็หนึ่งโหล หากคำตอบเป็นลบ แสดงว่างานนั้นได้รับการแก้ไขอย่างไม่ถูกต้องเช่นกัน

ตัวอย่างที่ 2

คำนวณพื้นที่ของภาพที่ล้อมรอบด้วยเส้น เอ็กซ์ซี = 4, x = 2, x= 4 และแกน วัว.

นี่เป็นตัวอย่างสำหรับ การตัดสินใจที่เป็นอิสระ. โซลูชั่นที่สมบูรณ์และคำตอบท้ายบทเรียน

จะทำอย่างไรถ้ามีสี่เหลี่ยมคางหมูโค้งอยู่ใต้แกน วัว?

ตัวอย่างที่ 3

คำนวณพื้นที่ของภาพที่ล้อมรอบด้วยเส้น = อดีต, x= 1 และแกนพิกัด

วิธีแก้ปัญหา: มาวาดรูปกันเถอะ:

หากสี่เหลี่ยมคางหมูโค้งอยู่ใต้แกนจนสุด วัวจากนั้นสามารถหาพื้นที่ได้โดยใช้สูตร:

ในกรณีนี้:

.

ความสนใจ! ไม่ควรสับสนงานทั้งสองประเภท:

1) หากคุณถูกขอให้แก้แค่อินทิกรัลจำกัดจำนวนโดยไม่มีความหมายทางเรขาคณิต ค่านั้นอาจเป็นค่าลบ

2) หากคุณถูกขอให้ค้นหาพื้นที่ของรูปโดยใช้อินทิกรัลจำกัดเขต พื้นที่นั้นจะเป็นบวกเสมอ! นั่นคือสาเหตุที่เครื่องหมายลบปรากฏในสูตรที่เพิ่งกล่าวถึง

ในทางปฏิบัติ ตัวเลขส่วนใหญ่มักจะอยู่ในระนาบครึ่งบนและล่าง ดังนั้น จากปัญหาที่ง่ายที่สุดของโรงเรียน เราจึงไปยังตัวอย่างที่มีความหมายมากขึ้น

ตัวอย่างที่ 4

หาพื้นที่ของรูปเครื่องบินที่ล้อมรอบด้วยเส้น = 2xx 2 , = -x.

วิธีแก้ปัญหา: ก่อนอื่นคุณต้องวาดรูป เมื่อสร้างภาพวาดในปัญหาพื้นที่ เราสนใจจุดตัดกันของเส้นมากที่สุด ลองหาจุดตัดของพาราโบลากัน = 2xx 2 และตรง = -x- ซึ่งสามารถทำได้สองวิธี วิธีแรกคือการวิเคราะห์ เราแก้สมการ:

วิธี, ขีดจำกัดล่างบูรณาการ = 0 ขีดจำกัดบนของการรวม = 3. มักจะสร้างผลกำไรได้มากกว่าและเร็วกว่าในการสร้างบรรทัดทีละจุด และขีดจำกัดของการบูรณาการจะชัดเจน "ด้วยตัวเอง" อย่างไรก็ตาม บางครั้งยังต้องใช้วิธีการวิเคราะห์ในการค้นหาขีดจำกัด ตัวอย่างเช่น กราฟมีขนาดใหญ่เพียงพอ หรือโครงสร้างโดยละเอียดไม่ได้เปิดเผยขีดจำกัดของการอินทิเกรต (อาจเป็นแบบเศษส่วนหรือไม่มีเหตุผล) กลับมาที่งานของเราดีกว่า การสร้างเส้นตรงก่อนแล้วจึงสร้างพาราโบลาจะมีเหตุผลมากกว่า มาวาดรูปกันเถอะ:

ขอย้ำอีกครั้งว่าเมื่อสร้างตามจุด ขีดจำกัดของการบูรณาการมักถูกกำหนด "โดยอัตโนมัติ"

และตอนนี้ สูตรการทำงาน:

หากอยู่ในส่วน [ ; ] ฟังก์ชันต่อเนื่องบางอย่าง (x) มากกว่าหรือเท่ากับฟังก์ชันต่อเนื่องบางฟังก์ชัน (x) จากนั้นสามารถหาพื้นที่ของรูปที่เกี่ยวข้องได้โดยใช้สูตร:

ที่นี่คุณไม่จำเป็นต้องคิดว่ารูปนั้นอยู่ที่ตำแหน่งใดอีกต่อไป - เหนือแกนหรือใต้แกน แต่สิ่งสำคัญคือกราฟใดสูงกว่า (สัมพันธ์กับกราฟอื่น) และกราฟใดอยู่ด้านล่าง

ในตัวอย่างที่กำลังพิจารณา เห็นได้ชัดว่าบนส่วนพาราโบลาอยู่เหนือเส้นตรง ดังนั้นจาก 2 xx 2 ต้องถูกลบ – x.

โซลูชันที่สมบูรณ์อาจมีลักษณะดังนี้:

รูปที่ต้องการถูกจำกัดด้วยพาราโบลา = 2xx 2 ด้านบนและตรง = -xด้านล่าง.

บนส่วนที่ 2 xx 2 ≥ -x- ตามสูตรที่เกี่ยวข้อง:

คำตอบ: .

ที่จริงแล้วสูตรของโรงเรียนสำหรับพื้นที่ของสี่เหลี่ยมคางหมูโค้งในระนาบครึ่งล่าง (ดูตัวอย่างที่ 3) เป็นกรณีพิเศษของสูตร

.

เพราะแกน วัวกำหนดโดยสมการ = 0 และกราฟของฟังก์ชัน (x) ซึ่งอยู่ใต้แกน วัว, ที่

.

และตอนนี้มีตัวอย่างบางส่วนสำหรับโซลูชันของคุณเอง

ตัวอย่างที่ 5

ตัวอย่างที่ 6

หาพื้นที่ของภาพที่ล้อมรอบด้วยเส้น

เมื่อแก้ไขปัญหาที่เกี่ยวข้องกับการคำนวณพื้นที่โดยใช้อินทิกรัลจำกัดเขต บางครั้งเหตุการณ์ตลกๆ ก็เกิดขึ้น วาดเสร็จถูกต้อง คำนวณถูก แต่เนื่องจากความประมาท...จึงพบพื้นที่ผิดรูป

ตัวอย่างที่ 7

ก่อนอื่นมาวาดรูปกันก่อน:

ร่างที่เราต้องหาพื้นที่นั้นแรเงาด้วยสีน้ำเงิน (ดูสภาพอย่างละเอียด - ร่างนั้นมีจำนวนจำกัดแค่ไหน!) แต่ในทางปฏิบัติเนื่องจากไม่ตั้งใจมักตัดสินใจว่าต้องหาพื้นที่ของร่างที่แรเงา สีเขียว!

ตัวอย่างนี้ยังมีประโยชน์เนื่องจากจะคำนวณพื้นที่ของรูปโดยใช้อินทิกรัลจำกัดจำนวนสองตัว จริงหรือ:

1) ในส่วน [-1; 1] เหนือแกน วัวกราฟจะอยู่ตรง = x+1;

2) บนส่วนที่อยู่เหนือแกน วัวกราฟของไฮเปอร์โบลาตั้งอยู่ = (2/x).

เห็นได้ชัดว่าสามารถ (และควร) เพิ่มพื้นที่ได้ ดังนั้น:

คำตอบ:

ตัวอย่างที่ 8

คำนวณพื้นที่ของภาพที่ล้อมรอบด้วยเส้น

นำเสนอสมการในรูปแบบ "โรงเรียน"

และทำการวาดภาพแบบจุดต่อจุด:

จากรูปวาด เห็นได้ชัดว่าขีดจำกัดบนของเราคือ “ดี”: = 1.

แต่ขีดจำกัดล่างคืออะไรล่ะ! เห็นได้ชัดว่านี่ไม่ใช่จำนวนเต็ม แต่คืออะไร?

อาจจะ, =(-1/3)? แต่การรับประกันว่าการวาดภาพนั้นทำขึ้นด้วยความแม่นยำสมบูรณ์แบบอยู่ที่ไหนก็อาจกลายเป็นอย่างนั้นได้ =(-1/4) =(-1/4) จะเกิดอะไรขึ้นถ้าเราสร้างกราฟไม่ถูกต้อง?

ในกรณีเช่นนี้ คุณต้องใช้เวลาเพิ่มเติมและชี้แจงขีดจำกัดของการผสานรวมเชิงวิเคราะห์

ลองหาจุดตัดกันของกราฟกัน

เมื่อต้องการทำเช่นนี้ เราจะแก้สมการ:

.

เพราะฉะนั้น, =(-1/3).

วิธีแก้ปัญหาเพิ่มเติมนั้นไม่สำคัญ สิ่งสำคัญคืออย่าสับสนในการทดแทนและสัญญาณ การคำนวณที่นี่ไม่ใช่วิธีที่ง่ายที่สุด บนส่วน

, ,

ตามสูตรที่เหมาะสม:

คำตอบ:

เพื่อสรุปบทเรียน มาดูงานที่ยากอีกสองงานกัน

ตัวอย่างที่ 9

คำนวณพื้นที่ของภาพที่ล้อมรอบด้วยเส้น

วิธีแก้ไข: ลองพรรณนารูปนี้ในภาพวาด

ในการวาดภาพแบบจุดต่อจุดคุณจำเป็นต้องรู้ รูปร่างไซนัสอยด์ โดยทั่วไป การรู้กราฟของฟังก์ชันพื้นฐานทั้งหมด รวมถึงค่าไซน์บางค่าจะเป็นประโยชน์ สามารถพบได้ในตารางค่า ฟังก์ชันตรีโกณมิติ- ในบางกรณี (เช่น ในกรณีนี้) สามารถสร้างแผนผังได้ ซึ่งกราฟและขีดจำกัดของการรวมควรแสดงอย่างถูกต้องโดยพื้นฐาน

ไม่มีปัญหากับข้อจำกัดของการบูรณาการที่นี่ ซึ่งเป็นไปตามเงื่อนไขโดยตรง:

– “x” เปลี่ยนจากศูนย์เป็น “pi” มาตัดสินใจเพิ่มเติมกัน:

ในส่วนของกราฟของฟังก์ชัน = บาป 3 xซึ่งอยู่เหนือแกน วัวนั่นเป็นเหตุผล:

(1) คุณสามารถดูว่าไซน์และโคไซน์ถูกรวมเข้าไว้ในกำลังคี่ได้อย่างไรในบทเรียนปริพันธ์ของฟังก์ชันตรีโกณมิติ เราบีบไซนัสหนึ่งอัน

(2) เราใช้เอกลักษณ์ตรีโกณมิติหลักในรูปแบบ

(3) มาเปลี่ยนตัวแปรกัน ที=คอส xดังนั้น: อยู่เหนือแกน ดังนั้น:

.

.

หมายเหตุ: ให้ความสนใจว่าอินทิกรัลของแทนเจนต์ในคิวบ์ถูกนำมาใช้อย่างไร ข้อพิสูจน์ของอันหลักถูกนำมาใช้ที่นี่ เอกลักษณ์ตรีโกณมิติ

.



สิ่งพิมพ์ที่เกี่ยวข้อง