Düzenli 6 açılı prizmanın alanı nasıl bulunur? Prizmanın taban alanı: üçgenden çokgene

Farklı prizmalar birbirinden farklıdır. Aynı zamanda pek çok ortak noktaları var. Prizmanın tabanının alanını bulmak için ne tür olduğunu anlamanız gerekir.

Genel teori

Prizma herhangi bir çokyüzlüdür taraflar paralelkenar şekline sahip olanlardır. Dahası, tabanı üçgenden n-gon'a kadar herhangi bir çokyüzlü olabilir. Üstelik prizmanın tabanları her zaman birbirine eşittir. Yan yüzler için geçerli olmayan şey, boyutlarının önemli ölçüde değişebilmesidir.

Problemleri çözerken sadece prizmanın taban alanıyla karşılaşılmaz. Yan yüzeyin yani taban olmayan tüm yüzlerin bilinmesini gerektirebilir. Tam yüzey, prizmayı oluşturan tüm yüzlerin birleşimi olacaktır.

Bazen sorunlar yükseklikle ilgilidir. Tabanlara diktir. Bir çokyüzlünün köşegeni, aynı yüze ait olmayan herhangi iki köşeyi çiftler halinde birleştiren bir segmenttir.

Düz veya eğimli bir prizmanın taban alanının, yan yüzler ile aralarındaki açıya bağlı olmadığı unutulmamalıdır. Üst ve alt yüzleri aynı rakamlara sahipse alanları eşit olacaktır.

Üçgen prizma

Tabanında üç köşeli bir şekil, yani bir üçgen vardır. Bildiğiniz gibi farklı olabilir. Eğer öyleyse, alanının bacakların çarpımının yarısı kadar belirlendiğini hatırlamak yeterlidir.

Matematiksel gösterim şu şekildedir: S = ½ av.

Tabanın alanını bulmak için Genel görünüm formüller işinize yarayacaktır: Balıkçıl ve kenarın yarısının kendisine çizilen yüksekliğe alındığı formül.

İlk formül şu şekilde yazılmalıdır: S = √(р (р-а) (р-в) (р-с)). Bu gösterim bir yarı-çevre (p), yani üç kenarın toplamının ikiye bölünmesiyle elde edilir.

İkincisi: S = ½ n a * a.

Düzenli olan üçgen prizmanın tabanının alanını bulmak istiyorsanız, üçgenin eşkenar olduğu ortaya çıkar. Bunun bir formülü var: S = ¼ a 2 * √3.

Dörtgen prizma

Tabanı bilinen dörtgenlerden herhangi biridir. Dikdörtgen veya kare, paralel yüzlü veya eşkenar dörtgen olabilir. Her durumda prizmanın tabanının alanını hesaplamak için kendi formülünüze ihtiyacınız olacak.

Taban bir dikdörtgen ise alanı şu şekilde belirlenir: S = ab, burada a, b dikdörtgenin kenarlarıdır.

Ne zaman Hakkında konuşuyoruz dörtgen bir prizma hakkında, daha sonra normal bir prizmanın tabanının alanı, kare formülü kullanılarak hesaplanır. Çünkü temelde yatan odur. S = a 2.

Tabanın paralel boru olması durumunda aşağıdaki eşitliğe ihtiyaç duyulacaktır: S = a * n a. Bir paralel yüzün tarafı ve açılardan biri verilir. Daha sonra yüksekliği hesaplamak için ek bir formül kullanmanız gerekecektir: n a = b * sin A. Üstelik A açısı “b” kenarına bitişiktir ve n yüksekliği bu açının karşısındadır.

Prizmanın tabanında bir eşkenar dörtgen varsa, o zaman alanını belirlemek için paralelkenarla aynı formüle ihtiyacınız olacaktır (çünkü bu onun özel bir durumudur). Ancak şunu da kullanabilirsiniz: S = ½ d 1 d 2. Burada d 1 ve d 2 eşkenar dörtgenin iki köşegenidir.

Düzenli beşgen prizma

Bu durum, çokgeni, alanlarını bulmanın daha kolay olduğu üçgenlere bölmeyi içerir. Her ne kadar rakamların farklı sayıda köşeleri olsa da.

Prizmanın tabanı düzgün bir beşgen olduğundan beş eşkenar üçgene bölünebilir. Daha sonra prizmanın tabanının alanı, böyle bir üçgenin alanına eşittir (formül yukarıda görülebilir), beş ile çarpılır.

Düzenli altıgen prizma

Beşgen prizma için açıklanan prensibi kullanarak tabanın altıgenini 6 eşkenar üçgene bölmek mümkündür. Böyle bir prizmanın taban alanı formülü öncekine benzer. Sadece altıyla çarpılmalıdır.

Formül şu şekilde görünecektir: S = 3/2 a 2 * √3.

Görevler

No. 1. Düzenli bir düz çizgi verildiğinde, köşegeni 22 cm, çokyüzlünün yüksekliği 14 cm'dir. Prizmanın tabanının ve tüm yüzeyin alanını hesaplayın.

Çözüm. Prizmanın tabanı karedir ancak kenarı bilinmemektedir. Değerini prizmanın köşegeni (d) ve yüksekliği (h) ile ilişkili olan karenin köşegeninden (x) bulabilirsiniz. x2 = d2 - n2. Öte yandan bu “x” parçası, kenarları karenin kenarına eşit olan bir üçgenin hipotenüsüdür. Yani x 2 = a 2 + a 2. Böylece a 2 = (d 2 - n 2)/2 olduğu ortaya çıkar.

D yerine 22 sayısını değiştirin ve "n" değerini - 14 ile değiştirin, karenin kenarının 12 cm olduğu ortaya çıkıyor. Şimdi sadece tabanın alanını bulun: 12 * 12 = 144 cm. 2.

Tüm yüzeyin alanını bulmak için taban alanının iki katını ve yan alanın dört katını eklemeniz gerekir. İkincisi, bir dikdörtgen formülü kullanılarak kolayca bulunabilir: çokyüzlünün yüksekliğini ve tabanın yan tarafını çarpın. Yani 14 ve 12, bu sayı 168 cm2'ye eşit olacaktır. Toplam alanı Prizmanın yüzeyi 960 cm2 olarak çıkıyor.

Cevap. Prizmanın tabanının alanı 144 cm2'dir. Tüm yüzey 960 cm2'dir.

No. 2. Verilen Tabanda kenarı 6 cm olan bir üçgen vardır. Bu durumda yan yüzün köşegeni 10 cm'dir. Taban ve yan yüzey.

Çözüm. Prizma düzgün olduğundan tabanı eşkenar üçgendir. Bu nedenle alanı 6'nın karesine, ¼ ile çarpımına ve 3'ün kareköküne eşit olur. Basit bir hesaplama şu sonuca yol açar: 9√3 cm2. Bu prizmanın bir tabanının alanıdır.

Tüm yan yüzler aynıdır ve kenarları 6 ve 10 cm olan dikdörtgenlerdir. Alanlarını hesaplamak için bu sayıları çarpmanız yeterlidir. Sonra bunları üçle çarpın çünkü prizmanın tam olarak bu kadar çok yan yüzü var. Daha sonra yaranın yan yüzeyinin alanı 180 cm2 olur.

Cevap. Alanlar: taban - 9√3 cm2, prizmanın yan yüzeyi - 180 cm2.

Bir prizmanın her bir köşesinden, örneğin A 1 köşesinden (Şek.), üç köşegen çizilebilir (A 1 E, A 1 D, A 1 C).

Tabanın (AE, AD, AC) köşegenleri tarafından ABCDEF düzlemine yansıtılırlar. A 1 E, A 1 D, A 1 C eğimli olanlardan en büyüğü, en büyük çıkıntıya sahip olanıdır. Sonuç olarak, alınan üç köşegenden en büyüğü A 1 D'dir (prizmada A 1 D'ye eşit köşegenler de vardır, ancak daha büyükleri yoktur).

A 1 AD üçgeninden, burada ∠DA 1 A = α ve A 1 D = D , H=AA 1 = buluyoruz D çünkü α ,
reklam= D günah α .

AOB eşkenar üçgeninin alanı 1/4 AO 2 √3'e eşittir. Buradan,

S ocn. = 6 1/4 AO 2 √3 = 6 1/4 (AD/2) 2 √3.

Hacim V = S H = 3√ 3 / 8 AD 2 AA 1

Cevap: 3√ 3 / 8 D 3 günah 2 α çünkü α .

Yorum . Düzenli bir altıgeni (bir prizmanın tabanı) tasvir etmek için, rastgele bir BCDO paralelkenarı oluşturabilirsiniz. OA = OD, OF = OC ve OE = OB parçalarını DO, CO, BO doğrularının devamı üzerine yerleştirdiğimizde ABCDEF altıgenini elde ederiz. O noktası merkezi temsil eder.




Düzenli altıgen prizma- tabanlarında iki normal altıgen bulunan ve tüm yan yüzleri bu tabanlara kesinlikle dik olan bir prizma.

  • A B C D E F A1 B1 C1 D1 e1 F1 - düzenli altıgen prizma
  • A- prizmanın tabanının kenarının uzunluğu
  • H- uzunluk yan kaburga prizmalar
  • Sana- prizma tabanının alanı
  • Staraf .- prizmanın yan yüzünün alanı
  • Stam dolu- prizmanın toplam yüzey alanı
  • Vprizmalar- prizma hacmi

Prizma taban alanı

Prizmanın tabanlarında kenarları olan düzenli altıgenler vardır. A. Düzenli bir altıgenin özelliklerine göre prizmanın tabanlarının alanı eşittir

Bu taraftan

Sana= 3 3 2 A2


Böylece ortaya çıkıyor ki SA B C D E F= SA1 B1 C1 D1 e1 F1 = 3 3 2 A2

Prizmanın toplam yüzey alanı

Bir prizmanın toplam yüzey alanı, prizmanın yan yüzlerinin alanları ile taban alanlarının toplamıdır. Prizmanın yan yüzlerinin her biri kenarları olan bir dikdörtgendir. A Ve H. Bu nedenle dikdörtgenin özelliklerine göre

Staraf .= a ⋅ h

Bir prizmanın altı yan yüzü ve iki tabanı vardır, bu nedenle toplam yüzey alanı eşittir

Stam dolu= 6 ⋅ Staraf .+ 2 ⋅ Sana= 6 ⋅ bir ⋅ sa + 2 ⋅ 3 3 2 A2

Prizma hacmi

Bir prizmanın hacmi, tabanının alanı ile yüksekliğinin çarpımı olarak hesaplanır. Düzenli bir prizmanın yüksekliği yan kenarlarından herhangi biridir; örneğin kenar A A1 . Doğrunun temelinde altıgen prizma Alanı bildiğimiz düzgün bir altıgen var. Aldık

Vprizmalar= Sana⋅A A1 = 3 3 2 A2 ⋅ sa

Prizma tabanlarında düzenli altıgen

Prizmanın tabanında yer alan ABCDEF düzgün altıgenini göz önünde bulunduruyoruz.

AD, BE ve CF segmentlerini çiziyoruz. Bu doğru parçalarının kesişimi O noktası olsun.

Düzgün altıgenin özelliklerine göre AOB, BOC, COD, DOE, EOF, FOA üçgenleri düzgün üçgenlerdir. Şunu takip ediyor

A Ö = Ö D = E Ö = Ö B = C Ö = Ö F = a

M noktasında CF segmentiyle kesişen bir AE segmenti çiziyoruz. AEO üçgeni ikizkenardır. Bir Ö = Ö E = bir , ∠ E Ö Bir = 120 . İkizkenar üçgenin özelliklerine göre.

Bir E = bir ⋅ 2 (1 - çünkü EOA)− − − − − − − − − − − − = 3 ⋅ bir

Benzer şekilde şu sonuca varıyoruz: Bir C = C E = 3 ⋅ bir, F M = M Ö = 1 2 ⋅ bir.

Bulduk e A1

Bir üçgendeBir E A1 :

  • A A1 = saat
  • Bir E = 3 ⋅ bir- yeni öğrendiğimiz gibi
  • ∠ E Bir A1 = 90

Bir E A1

e A1 = A A2 1 +Bir e2 − − − − − − − − − − = H2 + 3 ⋅ A2 − − − − − − − −

Eğer h = bir, e sonra e A1 = 2 ⋅ a

F B1 = bir C1 = B D1 = C e1 =D F1 = H2 + 3 ⋅ A2 − − − − − − − − .

BuldukeB 1

Bir üçgende OLMAK B1 :

  • B B1 = saat
  • BE = 2 ⋅ a- Çünkü E Ö = Ö B = a
  • ∠ E B B1 = 90 - doğru düzlüğün özelliklerine göre

Böylece üçgenin ortaya çıktığı ortaya çıkıyor. OLMAK B1 dikdörtgen. Dik üçgenin özelliklerine göre

e B1 = B B2 1 +B e2 − − − − − − − − − − = H2 + 4 ⋅ A2 − − − − − − − −

Eğer h = bir, e sonra

e B1 = 5 ⋅ bir

Benzer bir akıl yürütmeden sonra şunu elde ederiz: F C1 = bir D1 = B e1 = C F1 =D A1 = H2 + 4 ⋅ A2 − − − − − − − − .

Bulduk Ö F1

Bir üçgende F Ö F1 :

  • F F1 = saat
  • F Ö = a
  • ∠ Ç F F1 = 90 - düzenli bir prizmanın özelliklerine göre

Böylece üçgenin ortaya çıktığı ortaya çıkıyor. F Ö F1 dikdörtgen. Dik üçgenin özelliklerine göre

Ö F1 = F F2 1 + O F2 − − − − − − − − − − = H2 + A2 − − − − − −

Eğer h = bir, e sonra

Gizliliğinizin korunması bizim için önemlidir. Bu nedenle bilgilerinizi nasıl kullandığımızı ve sakladığımızı açıklayan bir Gizlilik Politikası geliştirdik. Lütfen gizlilik uygulamalarımızı inceleyin ve herhangi bir sorunuz varsa bize bildirin.

Kişisel bilgilerin toplanması ve kullanılması

Kişisel bilgiler, belirli bir kişiyi tanımlamak veya onunla iletişim kurmak için kullanılabilecek verileri ifade eder.

Bizimle iletişime geçtiğinizde istediğiniz zaman kişisel bilgilerinizi vermeniz istenebilir.

Aşağıda toplayabileceğimiz kişisel bilgi türlerine ve bu bilgileri nasıl kullanabileceğimize dair bazı örnekler verilmiştir.

Hangi kişisel bilgileri topluyoruz:

  • Sitede bir talep gönderdiğinizde toplayabiliriz çeşitli bilgiler adınız, telefon numaranız ve adresiniz dahil E-posta vesaire.

Kişisel bilgilerinizi nasıl kullanıyoruz:

  • Topladığımız kişisel bilgiler, benzersiz teklifler, promosyonlar, diğer etkinlikler ve yaklaşan etkinlikler konusunda sizinle iletişim kurmamıza olanak tanır.
  • Zaman zaman kişisel bilgilerinizi önemli bildirimler ve iletişimler göndermek için kullanabiliriz.
  • Kişisel bilgileri, sunduğumuz hizmetleri geliştirmek ve size hizmetlerimizle ilgili tavsiyeler sunmak amacıyla denetimler, veri analizi ve çeşitli araştırmalar yapmak gibi şirket içi amaçlarla da kullanabiliriz.
  • Bir ödül çekilişine, yarışmaya veya benzer bir promosyona katılırsanız, sağladığınız bilgileri bu tür programları yönetmek için kullanabiliriz.

Bilgilerin üçüncü şahıslara açıklanması

Sizden aldığımız bilgileri üçüncü şahıslara açıklamıyoruz.

İstisnalar:

  • Gerektiğinde - yasaya, adli prosedüre, yasal işlemlere uygun olarak ve/veya kamunun talep veya taleplerine dayanarak Devlet kurumları Rusya Federasyonu topraklarında - kişisel bilgilerinizi ifşa edin. Ayrıca, bu tür bir açıklamanın güvenlik, kanun yaptırımı veya diğer kamu önemi amaçları açısından gerekli veya uygun olduğunu tespit edersek, hakkınızdaki bilgileri de açıklayabiliriz.
  • Yeniden yapılanma, birleşme veya satış durumunda topladığımız kişisel bilgileri ilgili halef üçüncü tarafa aktarabiliriz.

Kişisel bilgilerin korunması

Kişisel bilgilerinizi kayıp, hırsızlık ve kötüye kullanımın yanı sıra yetkisiz erişime, ifşa edilmeye, değiştirilmeye ve imhaya karşı korumak için idari, teknik ve fiziksel önlemler alıyoruz.

Şirket düzeyinde gizliliğinize saygı duymak

Kişisel bilgilerinizin güvende olduğundan emin olmak için gizlilik ve güvenlik standartlarını çalışanlarımıza aktarıyor ve gizlilik uygulamalarını sıkı bir şekilde uyguluyoruz.

MÖ beşinci yüzyılda, antik Yunan filozofu Elea'lı Zenon, en ünlüsü "Aşil ve Kaplumbağa" aporia'sı olan ünlü aporialarını formüle etti. İşte kulağa nasıl geliyor:

Diyelim ki Aşil kaplumbağadan on kat daha hızlı koşuyor ve onun bin adım gerisinde. Aşil'in bu mesafeyi kat ettiği süre boyunca kaplumbağa aynı yönde yüz adım kadar sürünecektir. Aşil yüz adım koştuğunda kaplumbağa on adım daha sürünür ve bu böyle devam eder. Bu süreç sonsuza kadar devam edecek, Aşil kaplumbağaya asla yetişemeyecek.

Bu akıl yürütme sonraki tüm nesiller için mantıksal bir şok oldu. Aristoteles, Diogenes, Kant, Hegel, Hilbert... Hepsi öyle ya da böyle Zeno'nun açmazını değerlendirdiler. Şok o kadar güçlüydü ki " ... tartışmalar bugüne kadar devam ediyor; bilim camiası paradoksların özü hakkında henüz ortak bir görüşe varamadı ... konunun incelenmesine matematiksel analiz, küme teorisi, yeni fiziksel ve felsefi yaklaşımlar dahil edildi. ; hiçbiri soruna genel kabul görmüş bir çözüm olmadı..."[Wikipedia, "Zeno'nun Aporia'sı". Herkes kandırıldıklarını anlıyor ama kimse aldatmanın nelerden oluştuğunu anlamıyor.

Matematiksel bir bakış açısından Zeno, çıkmazında nicelikten niceliğe geçişi açıkça gösterdi. Bu geçiş, kalıcı olanların yerine uygulamayı ima etmektedir. Anladığım kadarıyla matematiksel uygulama aparatı değişken birimlerölçüm ya henüz geliştirilmemiştir ya da Zeno'nun açmazına uygulanmamıştır. Bizim kullanımımız sıradan mantık bizi tuzağa düşürüyor. Biz, düşüncenin ataleti nedeniyle, karşılıklı değere sabit zaman birimleri uyguluyoruz. Fiziksel açıdan bakıldığında bu, Aşil'in kaplumbağaya yetiştiği anda tamamen durana kadar zamanın yavaşlaması gibi görünüyor. Zaman durursa Aşil kaplumbağadan daha fazla koşamaz.

Her zamanki mantığımızı tersine çevirirsek her şey yerli yerine oturur. Aşil sabit hızla koşar. Yolunun her bir sonraki bölümü bir öncekinden on kat daha kısadır. Buna göre, bunun üstesinden gelmek için harcanan süre bir öncekine göre on kat daha azdır. Bu duruma “sonsuzluk” kavramını uygularsak, “Aşil kaplumbağaya sonsuz hızla yetişecek” demek doğru olur.

Bu mantıksal tuzaktan nasıl kaçınılır? Sabit zaman birimlerinde kalın ve karşılıklı birimlere geçmeyin. Zeno'nun dilinde şöyle görünür:

Aşil'in bin adım koşması gereken sürede kaplumbağa aynı yönde yüz adım koşacaktır. Bir sonraki birinciye eşit zaman aralığında Aşil bin adım daha koşacak ve kaplumbağa yüz adım daha sürünecektir. Artık Aşil kaplumbağanın sekiz yüz adım ilerisindedir.

Bu yaklaşım, herhangi bir mantıksal paradoks olmaksızın gerçekliği yeterince tanımlamaktadır. Ama öyle değil tam çözüm Sorunlar. Einstein'ın ışık hızının karşı konulmazlığıyla ilgili açıklaması Zeno'nun "Aşil ve Kaplumbağa" açmazına çok benziyor. Hala bu sorunu incelememiz, yeniden düşünmemiz ve çözmemiz gerekiyor. Ve çözümün sonsuz büyük sayılarda değil, ölçü birimlerinde aranması gerekiyor.

Zeno'nun bir başka ilginç açmazı da uçan bir oktan bahseder:

Uçan ok, zamanın her anında hareketsiz olduğundan hareketsizdir ve zamanın her anında hareketsiz olduğundan daima hareketsizdir.

Bu açmazda, mantıksal paradoksun üstesinden çok basit bir şekilde gelinir - uçan bir okun, uzayın farklı noktalarında her an hareketsiz olduğunu, bunun aslında bir hareket olduğunu açıklığa kavuşturmak yeterlidir. Burada bir başka noktaya dikkat çekmek gerekiyor. Yoldaki bir arabanın bir fotoğrafından ne hareketinin gerçekliğini ne de ona olan mesafeyi belirlemek imkansızdır. Bir arabanın hareket edip etmediğini belirlemek için aynı noktadan farklı zamanlarda çekilmiş iki fotoğrafa ihtiyacınız vardır, ancak onlara olan mesafeyi belirleyemezsiniz. Arabaya olan mesafeyi belirlemek için iki fotoğrafa ihtiyacınız var. farklı noktalar zamanın bir noktasında uzay, ancak onlardan hareketin gerçeğini belirlemek imkansızdır (doğal olarak hesaplamalar için hala ek verilere ihtiyaç vardır, trigonometri size yardımcı olacaktır). Belirtmek istediğim şey Özel dikkat Zamandaki iki nokta ile uzaydaki iki noktanın karıştırılmaması gereken farklı şeyler olduğu, çünkü araştırma için farklı fırsatlar sundukları.

4 Temmuz 2018 Çarşamba

Küme ve çoklu küme arasındaki farklar Vikipedi'de çok iyi anlatılmıştır. Görelim.

Gördüğünüz gibi “bir kümede iki özdeş eleman olamaz” ama bir kümede özdeş elemanlar varsa bu kümeye “çoklu küme” denir. Makul varlıklar bu kadar saçma mantığı asla anlayamayacaktır. Bu, “tamamen” kelimesinden zekası olmayan, konuşan papağanların ve eğitimli maymunların seviyesidir. Matematikçiler bize saçma fikirlerini vaaz eden sıradan eğitmenler gibi davranırlar.

Bir zamanlar köprüyü inşa eden mühendisler, köprüyü test ederken köprünün altında bir teknedeydiler. Köprü çökerse, vasat mühendis, yarattığı eserin enkazı altında öldü. Köprünün yüke dayanabilmesi durumunda yetenekli mühendis başka köprüler de inşa etti.

Matematikçiler "dikkat edin, evdeyim" veya daha doğrusu "matematik soyut kavramları inceler" ifadesinin arkasına ne kadar saklanırsa saklansınlar, onları gerçeklikle ayrılmaz bir şekilde bağlayan bir göbek bağı vardır. Bu göbek bağı paradır. Matematiksel küme teorisini matematikçilerin kendilerine uygulayalım.

Matematiği çok iyi çalıştık ve şimdi kasanın başında oturup maaş dağıtıyoruz. Yani bir matematikçi parası için bize geliyor. Tutarın tamamını ona sayıyoruz ve içine aynı değerdeki banknotları koyduğumuz farklı yığınlar halinde masamıza koyuyoruz. Daha sonra her yığından bir banknot alıyoruz ve matematikçiye "matematiksel maaş setini" veriyoruz. Matematikçiye, kalan banknotları ancak özdeş elemanları olmayan bir kümenin, aynı elemanları olan bir kümeye eşit olmadığını kanıtladığında alacağını açıklayalım. eğlence burada başlıyor.

Öncelikle milletvekillerinin mantığı işleyecek: “Bu başkalarına da uygulanabilir ama bana uygulanamaz!” Daha sonra bize aynı değerdeki banknotların olduğuna dair güvence vermeye başlayacaklar. farklı sayılar yani aynı unsurlar olarak kabul edilemeyecekleri anlamına gelir. Tamam, maaşları madeni para cinsinden sayalım - madeni paraların üzerinde rakam yok. Burada matematikçi çılgınca fiziği hatırlamaya başlayacak: farklı madeni paraların farklı miktarda kirleri var, kristal yapısı ve atomların düzeni her madeni para için benzersizdir...

Ve şimdi en çok şeye sahibim faiz Sor: Bir çoklu kümenin elemanlarının bir kümenin elemanlarına dönüştüğü ve bunun tersinin de geçerli olduğu çizgi nerede? Böyle bir çizgi yok - her şeye şamanlar karar veriyor, bilim burada yalan söylemeye bile yakın değil.

Buraya bak. Aynı saha alanına sahip futbol stadyumlarını seçiyoruz. Alanların alanları aynıdır; bu da bir çoklu kümeye sahip olduğumuz anlamına gelir. Ancak aynı stadyumların isimlerine baktığımızda çok sayıda isim görüyoruz çünkü isimler farklı. Gördüğünüz gibi aynı eleman kümesi hem bir küme hem de çoklu kümedir. Hangisi doğru? Ve burada matematikçi-şaman-keskinci kolundan bir koz çıkarır ve bize ya bir kümeden ya da bir çoklu kümeden bahsetmeye başlar. Her durumda bizi haklı olduğuna ikna edecektir.

Modern şamanların küme teorisini gerçekliğe bağlayarak nasıl çalıştığını anlamak için bir soruyu yanıtlamak yeterlidir: Bir kümenin öğeleri başka bir kümenin öğelerinden nasıl farklıdır? Size "tek bir bütün olarak düşünülemez" veya "tek bir bütün olarak düşünülemez" olmadan göstereceğim.

18 Mart 2018 Pazar

Bir sayının rakamlarının toplamı, şamanların tef ile dansıdır ve bunun matematikle hiçbir ilgisi yoktur. Evet, matematik derslerinde bize bir sayının rakamlarının toplamını bulmamız ve bunu kullanmamız öğretilir, ancak bu yüzden onlar şamandırlar, nesillerine becerilerini ve bilgeliğini öğretmek için çalışırlar, aksi takdirde şamanlar yok olup giderler.

Kanıta mı ihtiyacınız var? Wikipedia'yı açın ve "Bir sayının rakamlarının toplamı" sayfasını bulmaya çalışın. O yok. Matematikte herhangi bir sayının rakamlarının toplamını bulmak için kullanılabilecek bir formül yoktur. Sonuçta sayılar, sayıları yazdığımız grafik sembollerdir ve matematik dilinde görev şu şekildedir: "Herhangi bir sayıyı temsil eden grafik sembollerin toplamını bulun." Matematikçiler bu problemi çözemezler ama şamanlar bunu kolaylıkla yapabilirler.

Belirli bir sayının rakamlarının toplamını bulmak için ne ve nasıl yapacağımızı bulalım. Peki elimizde 12345 sayısı var. Bu sayının rakamlarının toplamını bulmak için ne yapılması gerekiyor? Tüm adımları sırayla ele alalım.

1. Numarayı bir kağıda yazın. Ne yaptık? Sayıyı grafiksel sayı sembolüne dönüştürdük. Bu matematiksel bir işlem değil.

2. Ortaya çıkan bir resmi, bireysel sayılar içeren birkaç resme kestik. Bir resmi kesmek matematiksel bir işlem değildir.

3. Bireysel grafik sembollerini sayılara dönüştürün. Bu matematiksel bir işlem değil.

4. Ortaya çıkan sayıları ekleyin. İşte bu matematik.

12345 sayısının rakamlarının toplamı 15'tir. Bunlar matematikçilerin kullandığı, şamanlar tarafından öğretilen “kesme ve dikme dersleridir”. Ama hepsi bu değil.

Matematiksel açıdan bakıldığında bir sayıyı hangi sayı sisteminde yazdığımız önemli değildir. Yani farklı sayı sistemlerinde aynı sayının rakamlarının toplamı farklı olacaktır. Matematikte sayı sistemi sayının sağında alt simge olarak gösterilir. İLE Büyük bir sayı 12345 Kafamı kandırmak istemem, ilgili yazıdan 26 sayısına bakalım. Bu sayıyı ikili, sekizli, onlu ve onaltılı sayı sistemlerinde yazalım. Her adıma mikroskop altında bakmayacağız; bunu zaten yaptık. Sonuca bakalım.

Gördüğünüz gibi farklı sayı sistemlerinde aynı sayının rakamlarının toplamı farklıdır. Bu sonucun matematikle hiçbir ilgisi yoktur. Tıpkı bir dikdörtgenin alanını metre ve santimetre olarak belirlerseniz tamamen farklı sonuçlar elde etmeniz gibi.

Sıfır tüm sayı sistemlerinde aynı görünür ve rakam toplamı yoktur. Bu, gerçeğin lehine başka bir argümandır. Matematikçilere soru: Matematikte sayı olmayan bir şey nasıl belirlenir? Ne yani, matematikçiler için sayılardan başka hiçbir şey yok mu? Buna şamanlar için izin verebilirim ama bilim adamları için izin veremem. Gerçeklik sadece sayılardan ibaret değildir.

Elde edilen sonuç, sayı sistemlerinin sayıların ölçü birimleri olduğunun kanıtı olarak değerlendirilmelidir. Sonuçta sayıları farklı ölçü birimleriyle karşılaştıramayız. Aynı niceliğin farklı ölçü birimleriyle yapılan aynı eylemler, karşılaştırıldıktan sonra farklı sonuçlara yol açıyorsa, bunun matematikle hiçbir ilgisi yoktur.

Gerçek matematik nedir? Bu, bir matematiksel işlemin sonucunun sayının büyüklüğüne, kullanılan ölçü birimine ve bu işlemi kimin yaptığına bağlı olmadığı durumdur.

Kapıya imza at Kapıyı açar ve şöyle der:

Ah! Burası kadınlar tuvaleti değil mi?
- Genç kadın! Burası, cennete yükselişleri sırasında ruhların ölümsüz kutsallığının incelenmesine yönelik bir laboratuvardır! Halo üstte ve yukarı ok. Başka hangi tuvalet?

Dişi... Üstteki hale ve aşağı ok erkektir.

Böyle bir tasarım sanatı eseri günde birkaç kez gözünüzün önünden geçiyorsa,

O halde arabanızda aniden garip bir simge bulmanız şaşırtıcı değil:

Kişisel olarak ben kaka yapan bir insanda eksi dört dereceyi görmeye çalışıyorum (bir resim) (birkaç resmin birleşimi: bir eksi işareti, dört rakamı, derecelerin gösterimi). Ve bu kızın fizik bilmeyen bir aptal olduğunu düşünmüyorum. Sadece grafik görüntüleri algılama konusunda güçlü bir stereotipi var. Ve matematikçiler bize bunu her zaman öğretiyorlar. İşte bir örnek.

1A “eksi dört derece” veya “bir a” değildir. Bu "kaka yapan adam" veya onaltılık gösterimle "yirmi altı" sayısıdır. Sürekli olarak bu sayı sisteminde çalışan kişiler, sayıyı ve harfi otomatik olarak tek bir grafik sembol olarak algılarlar.



İlgili yayınlar