İkinci dereceden bir denklem b olmadan nasıl çözülür? Tamamlanmamış ikinci dereceden denklemlerin tanımı ve örnekleri

Bunun, a, b ve c'nin bilinmeyen x için gerçek katsayılar olduğu ve a ≠ o ve b ve c'nin aynı anda sıfır olacağı ax 2 + bx + c = o eşitliğinin özel bir versiyonu olduğu bilinmektedir. ayrı ayrı. Örneğin, c = o, b ≠ o veya tam tersi. İkinci dereceden denklemin tanımını neredeyse hatırladık.

İkinci derece trinomial sıfırdır. İlk katsayısı a ≠ o, b ve c herhangi bir değeri alabilir. X değişkeninin değeri, ikame onu doğru bir sayısal eşitliğe dönüştürdüğünde olacaktır. Gerçek köklere odaklanalım, ancak denklemin çözümleri de olabilir. Katsayılardan hiçbirinin o, a ≠ o, b ≠ o, c ≠ o'ya eşit olmadığı bir denklemi tam olarak adlandırmak gelenekseldir.
Bir örnek çözelim. 2x 2 -9x-5 = ah, buluyoruz
D = 81+40 = 121,
D pozitiftir, yani kökler vardır, x 1 = (9+√121):4 = 5 ve ikinci x 2 = (9-√121):4 = -o.5. Kontrol etmek doğru olduklarından emin olmanıza yardımcı olacaktır.

İşte ikinci dereceden denklemin adım adım çözümü

Diskriminant kullanarak, sol tarafında a ≠ o için bilinen ikinci dereceden üç terimli herhangi bir denklemi çözebilirsiniz. Örneğimizde. 2x 2 -9x-5 = 0 (ax 2 +in+s = o)

İkinci dereceden eksik denklemlerin ne olduğunu düşünelim

  1. ax 2 +in = o. Serbest terim, x 0'daki c katsayısı, burada ≠ o'da sıfıra eşittir.
    Bu türden tamamlanmamış ikinci dereceden bir denklem nasıl çözülür? Parantez içinde x'i çıkaralım. İki faktörün çarpımının sıfıra eşit olduğu zamanı hatırlayalım.
    x(ax+b) = o, bu x = o veya ax+b = o olduğunda olabilir.
    2.yi çözdükten sonra x = -в/а elde ederiz.
    Sonuç olarak, x 2 = -b/a hesaplamalarına göre köklerimiz x 1 = 0'dır.
  2. Şimdi x'in katsayısı o'ya eşittir ve c (≠) o'ya eşit değildir.
    x 2 +c = o. C'yi eşitliğin sağ tarafına taşıyalım, x 2 = -с elde ederiz. Bu denklemin yalnızca -c olduğunda gerçek kökleri vardır pozitif sayı(‹ o ile),
    x 1 sırasıyla √(-c)'ye eşit olur, x 2 ise -√(-c) olur. Aksi takdirde denklemin hiçbir kökü yoktur.
  3. Son seçenek: b = c = o, yani ax 2 = o. Doğal olarak bu kadar basit bir denklemin tek kökü vardır: x = o.

Özel durumlar

Tamamlanmamış ikinci dereceden bir denklemin nasıl çözüleceğine baktık ve şimdi herhangi bir türü ele alalım.

  • Tam ikinci dereceden bir denklemde, x'in ikinci katsayısı şöyledir: çift ​​sayı.
    k = o.5b olsun. Diskriminant ve kökleri hesaplamak için formüllerimiz var.
    D/4 = k 2 - ac, D › o için kökler x 1,2 = (-k±√(D/4))/a olarak hesaplanır.
    D = o'da x = -k/a.
    D ‹ o için kök yoktur.
  • İkinci dereceden denklemler vardır, x kare katsayısı 1'e eşit olduğunda genellikle x 2 + рх + q = o şeklinde yazılır. Yukarıdaki formüllerin tümü onlar için geçerlidir, ancak hesaplamalar biraz daha basittir.
    Örnek, x 2 -4x-9 = 0. D: 2 2 +9, D = 13'ü hesaplayın.
    x 1 = 2+√13, x 2 = 2-√13.
  • Ayrıca verilenlere uygulanması da kolaydır, denklemin köklerinin toplamının -p'ye eşit olduğunu, ikinci katsayının eksi (karşıt işaret anlamına gelir) olduğunu ve aynı köklerin çarpımının olacağını söylüyor. serbest terim olan q'ya eşit olsun. Bu denklemin köklerini sözlü olarak belirlemenin ne kadar kolay olacağını görün. İndirgenmemiş katsayılar için (sıfıra eşit olmayan tüm katsayılar için), bu teorem şu şekilde uygulanabilir: x 1 + x 2 toplamı -b/a'ya eşittir, x 1 ·x 2 çarpımı c/a'ya eşittir.

Serbest terim c ile birinci katsayı a'nın toplamı b katsayısına eşittir. Bu durumda, denklemin en az bir kökü vardır (kanıtlanması kolaydır), birincisi zorunlu olarak -1'e ve varsa ikincisi -c/a'ya eşit olacaktır. Tamamlanmamış ikinci dereceden bir denklemi kendiniz nasıl çözeceğinizi kontrol edebilirsiniz. Daha basit olamazdı. Katsayılar birbirleriyle belirli ilişkiler içinde olabilir.

  • x 2 +x = o, 7x 2 -7 = o.
  • Tüm katsayıların toplamı o'ya eşittir.
    Böyle bir denklemin kökleri 1 ve c/a'dır. Örnek, 2x 2 -15x+13 = o.
    x 1 = 1, x 2 = 13/2.

Çeşitli ikinci derece denklemleri çözmenin başka yolları da vardır. Örneğin burada belirli bir polinomdan tam bir kare çıkarmak için bir yöntem var. Birkaç grafiksel yöntem vardır. Bu tür örneklerle sık sık karşılaştığınızda, tohum gibi “tıklamayı” öğreneceksiniz çünkü tüm yöntemler otomatik olarak aklınıza geliyor.

Bu matematik programıyla şunları yapabilirsiniz: ikinci dereceden denklemi çöz.

Program sadece sorunun cevabını vermekle kalmıyor, aynı zamanda çözüm sürecini de iki şekilde gösteriyor:
- diskriminant kullanmak
- Vieta teoremini kullanarak (mümkünse).

Üstelik cevap yaklaşık olarak değil kesin olarak görüntülenir.
Örneğin, \(81x^2-16x-1=0\) denklemi için cevap aşağıdaki biçimde görüntülenir:

$$ x_1 = \frac(8+\sqrt(145))(81), \quad x_2 = \frac(8-\sqrt(145))(81) $$ ve şu şekilde değil: \(x_1 = 0,247; \quad x_2 = -0,05\)

Bu program ortaöğretimdeki lise öğrencilerine hazırlık aşamasında faydalı olabilir testler ve sınavlar, Birleşik Devlet Sınavından önce bilgiyi test ederken, ebeveynlerin matematik ve cebirdeki birçok problemin çözümünü kontrol etmeleri için.

Ya da belki bir öğretmen tutmak ya da yeni ders kitapları satın almak sizin için çok mu pahalı? Yoksa matematik veya cebir ödevinizi mümkün olduğu kadar çabuk bitirmek mi istiyorsunuz? Bu durumda detaylı çözümlere sahip programlarımızı da kullanabilirsiniz.

Bu sayede hem kendi eğitiminizi hem de küçük kardeşlerinizin eğitimini yürütebilir, sorun çözme alanındaki eğitim düzeyi de artar.

İkinci dereceden polinom girme kurallarına aşina değilseniz, bunları öğrenmenizi öneririz.

İkinci dereceden polinom girme kuralları
Herhangi bir Latin harfi değişken görevi görebilir.

Örneğin: \(x, y, z, a, b, c, o, p, q\), vb.
Sayılar tam veya kesirli sayı olarak girilebilir. Dahası, kesirli sayılar

yalnızca ondalık sayı olarak değil aynı zamanda sıradan bir kesir olarak da girilebilir.
Ondalık kesirleri girme kuralları.
Ondalık kesirlerde kesirli kısım bütün kısımdan nokta veya virgülle ayrılabilir. Örneğin, girebilirsiniz ondalık sayılar

şu şekilde: 2,5x - 3,5x^2
Sıradan kesirleri girme kuralları.

Yalnızca bir tam sayı bir kesrin pay, payda ve tam sayı kısmı olarak işlev görebilir.

Payda negatif olamaz. Girerken sayısal kesir /
Pay, paydadan bir bölme işaretiyle ayrılır: &
Parçanın tamamı kesirden ve işaretiyle ayrılır:
Giriş: 3&1/3 - 5&6/5z +1/7z^2

Sonuç: \(3\frac(1)(3) - 5\frac(6)(5) z + \frac(1)(7)z^2\) Bir ifade girerken parantez kullanabilirsiniz
. Bu durumda, ikinci dereceden bir denklemi çözerken, tanıtılan ifade ilk önce basitleştirilir.


=0
Örnek: x^2+2x-1

Karar vermek
Bu sorunu çözmek için gerekli olan bazı scriptlerin yüklenmediği ve programın çalışmayabileceği tespit edildi.
AdBlock'u etkinleştirmiş olabilirsiniz.

Bu durumda devre dışı bırakın ve sayfayı yenileyin.
Tarayıcınızda JavaScript devre dışı bırakıldı.
Çözümün görünmesi için JavaScript'i etkinleştirmeniz gerekir.

Tarayıcınızda JavaScript'i nasıl etkinleştireceğinize ilişkin talimatları burada bulabilirsiniz.
Çünkü Sorunu çözmek isteyen çok kişi var, talebiniz sıraya alındı.
Birkaç saniye içinde çözüm aşağıda görünecektir. Lütfen bekleyin


saniye... eğer sençözümde bir hata fark ettim
, ardından Geri Bildirim Formu'na bu konuda yazabilirsiniz. unutma hangi görevi belirtin ne olduğuna sen karar ver.



alanlara girin

Oyunlarımız, bulmacalarımız, emülatörlerimiz:

Küçük bir teori.

İkinci dereceden denklem ve kökleri. Tamamlanmamış ikinci dereceden denklemler
\(-x^2+6x+1,4=0, \quad 8x^2-7x=0, \quad x^2-\frac(4)(9)=0 \)
benziyor
\(ax^2+bx+c=0, \)
burada x bir değişkendir, a, b ve c sayılardır.
Birinci denklemde a = -1, b = 6 ve c = 1.4, ikincisinde a = 8, b = -7 ve c = 0, üçüncüsünde ise a = 1, b = 0 ve c = 4/9 bulunmaktadır. Bu tür denklemlere denir ikinci dereceden denklemler.

Tanım.
İkinci dereceden denklem ax 2 +bx+c=0 biçiminde bir denklem denir; burada x bir değişkendir, a, b ve c bazı sayılardır ve \(a \neq 0 \).

a, b ve c sayıları ikinci dereceden denklemin katsayılarıdır. A sayısına birinci katsayı, b sayısına ikinci katsayı, c sayısına ise serbest terim denir.

ax 2 +bx+c=0 formundaki denklemlerin her birinde (burada \(a\neq 0\), x değişkeninin en büyük kuvveti bir karedir. Bu nedenle adı: ikinci dereceden denklem.

İkinci dereceden bir denklemin ikinci dereceden bir denklem olarak da adlandırıldığını unutmayın, çünkü sol tarafı ikinci dereceden bir polinomdur.

x 2 katsayısının 1'e eşit olduğu ikinci dereceden denklem denir verilen ikinci dereceden denklem. Örneğin, verilen ikinci dereceden denklemler denklemlerdir
\(x^2-11x+30=0, \quad x^2-6x=0, \quad x^2-8=0 \)

İkinci dereceden bir denklemde ax 2 +bx+c=0 b veya c katsayılarından en az biri sıfıra eşitse, böyle bir denklem denir tamamlanmamış ikinci dereceden denklem. Dolayısıyla -2x 2 +7=0, 3x 2 -10x=0, -4x 2 =0 denklemleri tamamlanmamış ikinci dereceden denklemlerdir. Bunlardan ilkinde b=0, ikincisinde c=0, üçüncüsünde b=0 ve c=0 olur.

Üç tür tamamlanmamış ikinci dereceden denklem vardır:
1) ax 2 +c=0, burada \(c \neq 0 \);
2) ax 2 +bx=0, burada \(b \neq 0 \);
3) balta 2 =0.

Bu türlerin her birinin denklemlerini çözmeyi düşünelim.

\(c \neq 0 \) için ax 2 +c=0 formundaki tamamlanmamış ikinci dereceden bir denklemi çözmek için, serbest terimini sağ tarafa taşıyın ve denklemin her iki tarafını da a'ya bölün:
\(x^2 = -\frac(c)(a) \Rightarrow x_(1,2) = \pm \sqrt( -\frac(c)(a)) \)

\(c \neq 0 \) olduğundan \(-\frac(c)(a) \neq 0 \)

Eğer \(-\frac(c)(a)>0\) ise denklemin iki kökü vardır.

Eğer \(-\frac(c)(a) ax 2 +bx=0 formundaki tamamlanmamış ikinci dereceden bir denklemi \(b \neq 0 \) ile çözmek için sol tarafını çarpanlara ayırın ve denklemi elde edin
\(x(ax+b)=0 \Rightarrow \left\( \begin(array)(l) x=0 \\ ax+b=0 \end(array) \right. \Rightarrow \left\( \begin (array)(l) x=0 \\ x=-\frac(b)(a) \end(array) \right.

Bu, \(b \neq 0 \) için ax 2 +bx=0 formundaki tamamlanmamış ikinci dereceden bir denklemin her zaman iki kökü olduğu anlamına gelir.

ax 2 =0 formundaki tamamlanmamış bir ikinci dereceden denklem, x 2 =0 denklemine eşdeğerdir ve bu nedenle tek bir kökü 0'dır.

İkinci dereceden bir denklemin kökleri için formül

Şimdi hem bilinmeyenlerin katsayılarının hem de serbest terimin sıfırdan farklı olduğu ikinci dereceden denklemlerin nasıl çözüleceğine bakalım.

İkinci dereceden denklemi çözelim genel görünüm ve sonuç olarak köklerin formülünü elde ederiz. Bu formül daha sonra herhangi bir ikinci dereceden denklemi çözmek için kullanılabilir.

İkinci dereceden denklemi ax 2 +bx+c=0 çözelim

Her iki tarafı a'ya bölerek eşdeğer indirgenmiş ikinci dereceden denklemi elde ederiz
\(x^2+\frac(b)(a)x +\frac(c)(a)=0 \)

Binomun karesini seçerek bu denklemi dönüştürelim:
\(x^2+2x \cdot \frac(b)(2a)+\left(\frac(b)(2a)\right)^2- \left(\frac(b)(2a)\right)^ 2 + \frac(c)(a) = 0 \Rightarrow \)

\(x^2+2x \cdot \frac(b)(2a)+\left(\frac(b)(2a)\right)^2 = \left(\frac(b)(2a)\right)^ 2 - \frac(c)(a) \Rightarrow \) \(\left(x+\frac(b)(2a)\right)^2 = \frac(b^2)(4a^2) - \frac( c)(a) \Rightarrow \left(x+\frac(b)(2a)\right)^2 = \frac(b^2-4ac)(4a^2) \Rightarrow \) \(x+\frac(b) )(2a) = \pm \sqrt( \frac(b^2-4ac)(4a^2) ) \Rightarrow x = -\frac(b)(2a) + \frac( \pm \sqrt(b^2) -4ac) )(2a) \Rightarrow \) \(x = \frac( -b \pm \sqrt(b^2-4ac) )(2a) \)

Radikal ifade denir ikinci dereceden bir denklemin diskriminantı ax 2 +bx+c=0 (Latince'de “ayırıcı” - ayrımcı) D harfiyle belirtilir, yani.
\(D = b^2-4ac\)

Şimdi diskriminant gösterimini kullanarak ikinci dereceden denklemin köklerinin formülünü yeniden yazıyoruz:
\(x_(1,2) = \frac( -b \pm \sqrt(D) )(2a) \), burada \(D= b^2-4ac \)

Şu açıktır:
1) D>0 ise ikinci dereceden denklemin iki kökü vardır.
2) Eğer D=0 ise ikinci dereceden denklemin bir kökü vardır \(x=-\frac(b)(2a)\).
3) Eğer D Dolayısıyla, diskriminantın değerine bağlı olarak, ikinci dereceden bir denklemin iki kökü olabilir (D > 0 için), bir kökü olabilir (D = 0 için) veya hiç kökü olmayabilir (D için) Bunu kullanarak ikinci dereceden bir denklemi çözerken formülü aşağıdaki şekilde yapmanız önerilir:
1) diskriminantı hesaplayın ve sıfırla karşılaştırın;
2) Diskriminant pozitif veya sıfıra eşitse kök formülü kullanın; diskriminant negatifse kök olmadığını yazın.

Vieta teoremi

Verilen ikinci dereceden ax 2 -7x+10=0 denkleminin kökleri 2 ve 5'tir. Köklerin toplamı 7, çarpımı ise 10'dur. Köklerin toplamının buradan alınan ikinci katsayıya eşit olduğunu görüyoruz. karşıt işaret ve köklerin çarpımı serbest terime eşittir. Kökleri olan herhangi bir indirgenmiş ikinci dereceden denklem bu özelliğe sahiptir.

Verilen ikinci dereceden denklemin köklerinin toplamı, ters işaretli ikinci katsayıya, köklerin çarpımı ise serbest terime eşittir.

Onlar. Vieta teoremi, indirgenmiş ikinci dereceden denklem x 2 +px+q=0'ın kökleri x 1 ve x 2'nin şu özelliğe sahip olduğunu belirtir:
\(\left\( \begin(array)(l) x_1+x_2=-p \\ x_1 \cdot x_2=q \end(array) \right. \)

İkinci dereceden bir denklemin kökleri için formüller. Gerçek, çoklu ve karmaşık kök durumları dikkate alınır. İkinci dereceden bir trinomialın çarpanlara ayrılması. Geometrik yorumlama. Kök belirleme ve çarpanlara ayırma örnekleri.

Temel formüller

İkinci dereceden denklemi düşünün:
(1) .
İkinci dereceden bir denklemin kökleri(1) aşağıdaki formüllerle belirlenir:
; .
Bu formüller şu şekilde birleştirilebilir:
.
İkinci dereceden bir denklemin kökleri bilindiğinde, ikinci dereceden bir polinom, faktörlerin (çarpanlarına alınmış) bir ürünü olarak temsil edilebilir:
.

Daha sonra bunların gerçek sayılar olduğunu varsayacağız.
düşünelim ikinci dereceden bir denklemin diskriminantı:
.
Diskriminant pozitifse, ikinci dereceden denklemin (1) iki farklı gerçek kökü vardır:
; .
O zaman ikinci dereceden üç terimlinin çarpanlara ayrılması şu şekildedir:
.
Diskriminant sıfıra eşitse, ikinci dereceden denklemin (1) iki çoklu (eşit) gerçek kökü vardır:
.
Faktorizasyon:
.
Diskriminant negatifse, ikinci dereceden denklemin (1) iki karmaşık eşlenik kökü vardır:
;
.
İşte sanal birim;
ve köklerin gerçek ve sanal kısımları:
; .
Daha sonra

.

Grafik yorumlama

Eğer inşa edersen bir fonksiyonun grafiği
,
bu bir parabol ise, grafiğin eksenle kesişme noktaları denklemin kökleri olacaktır.
.
noktasında grafik x eksenini (ekseni) iki noktada keser.
Grafik x eksenine bir noktada dokunduğunda.
Grafik x eksenini kesmediğinde.

Aşağıda bu tür grafiklerin örnekleri verilmiştir.

İkinci dereceden denklemle ilgili faydalı formüller

(f.1) ;
(f.2) ;
(f.3) .

İkinci dereceden bir denklemin kökleri için formülün türetilmesi

Dönüşümler gerçekleştiriyoruz ve (f.1) ve (f.3) formüllerini uyguluyoruz:




,
Nerede
; .

Böylece ikinci dereceden bir polinomun formülünü şu şekilde elde ettik:
.
Bu, denklemin

gerçekleştirilen
Ve .
Yani ve ikinci dereceden denklemin kökleridir
.

İkinci dereceden bir denklemin köklerini belirleme örnekleri

Örnek 1


(1.1) .

Çözüm


.
Denklemimiz (1.1) ile karşılaştırıldığında katsayıların değerlerini buluyoruz:
.
Diskriminantı buluyoruz:
.
Diskriminant pozitif olduğundan denklemin iki gerçek kökü vardır:
;
;
.

Bundan ikinci dereceden üç terimlinin çarpanlara ayrılmasını elde ederiz:

.

y = fonksiyonunun grafiği 2 x 2 + 7 x + 3 x eksenini iki noktada keser.

Fonksiyonun grafiğini çizelim
.
Bu fonksiyonun grafiği bir paraboldür. Apsis eksenini (ekseni) iki noktada keser:
Ve .
Bu noktalar orijinal denklemin (1.1) kökleridir.

Cevap

;
;
.

Örnek 2

İkinci dereceden bir denklemin köklerini bulun:
(2.1) .

Çözüm

İkinci dereceden denklemi genel biçimde yazalım:
.
Orijinal denklem (2.1) ile karşılaştırıldığında katsayıların değerlerini buluyoruz:
.
Diskriminantı buluyoruz:
.
Diskriminant sıfır olduğundan denklemin iki çoklu (eşit) kökü vardır:
;
.

O halde trinomiyalin çarpanlara ayrılması şu şekildedir:
.

y = x fonksiyonunun grafiği 2 - 4 x + 4 x eksenine bir noktada dokunuyor.

Fonksiyonun grafiğini çizelim
.
Bu fonksiyonun grafiği bir paraboldür. X eksenine (ekseni) bir noktada dokunuyor:
.
Bu nokta orijinal denklemin (2.1) köküdür. Bu kök iki kez çarpanlara ayrıldığından:
,
o zaman böyle bir köke genellikle kat denir. Yani iki eşit kök olduğuna inanıyorlar:
.

Cevap

;
.

Örnek 3

İkinci dereceden bir denklemin köklerini bulun:
(3.1) .

Çözüm

İkinci dereceden denklemi genel biçimde yazalım:
(1) .
Orijinal denklemi (3.1) yeniden yazalım:
.
(1) ile karşılaştırarak katsayıların değerlerini buluyoruz:
.
Diskriminantı buluyoruz:
.
Diskriminant negatiftir.

Bu nedenle gerçek kökler yoktur.
;
;
.

Karmaşık kökleri bulabilirsiniz:


.

Daha sonra

Fonksiyonun grafiğini çizelim
.
Fonksiyonun grafiği x eksenini kesmez. Gerçek kökler yoktur.

Cevap

Bu fonksiyonun grafiği bir paraboldür. X eksenini (ekseni) kesmez. Bu nedenle gerçek kökler yoktur.
;
;
.

Gerçek kökler yoktur. Karmaşık kökler:

Kopyevskaya kırsal orta öğretim okulu 10 çözüm

ikinci dereceden denklemler

Başkan: Patrikeeva Galina Anatolyevna,

matematik öğretmeni

köy Kopevo, 2007

1. İkinci dereceden denklemlerin gelişiminin tarihi

1.1 Antik Babil'de ikinci dereceden denklemler

1.2 Diophantus ikinci dereceden denklemleri nasıl oluşturup çözdü?

1.3 Hindistan'da ikinci dereceden denklemler

1.4 El-Khorezmi'nin ikinci dereceden denklemleri

1.5 Avrupa XIII - XVII yüzyıllarda ikinci dereceden denklemler

1.6 Vieta teoremi hakkında

2. İkinci dereceden denklemleri çözme yöntemleri

Çözüm

1. Edebiyat

İkinci dereceden denklemlerin gelişiminin tarihi

1.1 Antik Babil'de ikinci dereceden denklemler Antik çağda sadece birinci değil ikinci dereceden denklemleri çözme ihtiyacı, alan bulma ile ilgili problemleri çözme ihtiyacından kaynaklanıyordu. arsalar

ve askeri nitelikteki toprak işlerinin yanı sıra astronomi ve matematiğin gelişmesiyle. İkinci dereceden denklemler MÖ 2000 civarında çözülebildi. e. Babilliler.

Modern cebirsel gösterimi kullanarak, çivi yazılı metinlerinde eksik olanlara ek olarak, örneğin tam ikinci dereceden denklemlerin bulunduğunu söyleyebiliriz: 2 + Modern cebirsel gösterimi kullanarak, çivi yazılı metinlerinde eksik olanlara ek olarak, örneğin tam ikinci dereceden denklemlerin bulunduğunu söyleyebiliriz: = ¾; Modern cebirsel gösterimi kullanarak, çivi yazılı metinlerinde eksik olanlara ek olarak, örneğin tam ikinci dereceden denklemlerin bulunduğunu söyleyebiliriz: 2 - Modern cebirsel gösterimi kullanarak, çivi yazılı metinlerinde eksik olanlara ek olarak, örneğin tam ikinci dereceden denklemlerin bulunduğunu söyleyebiliriz: = 14,5

Babil metinlerinde belirtilen bu denklemleri çözme kuralı esasen modern kuralla örtüşmektedir, ancak Babillilerin bu kurala nasıl ulaştığı bilinmemektedir. Şu ana kadar bulunan hemen hemen tüm çivi yazılı metinler, nasıl bulunduklarına dair hiçbir ipucu vermeden, yalnızca yemek tarifleri biçiminde ortaya konan çözümlerle ilgili sorunlar sunuyor.

Aksine yüksek seviye Babil'de cebirin gelişmesiyle birlikte çivi yazılı metinler negatif sayı kavramından yoksundur ve genel yöntemlerİkinci dereceden denklemlerin çözümü.

1.2 Diophantus ikinci dereceden denklemleri nasıl oluşturup çözdü.

Diophantus'un Aritmetiği cebirin sistematik bir sunumunu içermez, ancak açıklamalar eşliğinde ve çeşitli derecelerde denklemler oluşturularak çözülen sistematik bir dizi problem içerir.

Denklemler oluştururken Diophantus, çözümü basitleştirmek için bilinmeyenleri ustaca seçer.

Örneğin, görevlerinden biri burada.

Sorun 11.“Toplamlarının 20 ve çarpımlarının 96 olduğunu bilerek iki sayı bulun”

Diophantus şu sonuca varıyor: Sorunun koşullarından gerekli sayıların eşit olmadığı anlaşılıyor, çünkü eşit olsalardı çarpımları 96'ya değil 100'e eşit olurdu. Dolayısıyla bunlardan biri birden fazla olacaktır. toplamlarının yarısı, yani . 10 + x, diğeri daha azdır, yani. 10'lar. Aralarındaki fark 2x .

Dolayısıyla denklem:

(10 + x)(10 - x) = 96

100 - x 2 = 96

x 2 - 4 = 0 (1)

Buradan x = 2. Gerekli sayılardan biri eşittir 12 , diğer 8 . Çözüm x = -2 Yunan matematiği yalnızca pozitif sayıları bildiğinden Diophantus için mevcut değildir.

Bu problemi gerekli sayılardan birini bilinmeyen olarak seçerek çözersek denklemin çözümüne ulaşmış oluruz.

y(20 - y) = 96,

y 2 - 20y + 96 = 0. (2)


Diophantus'un gerekli sayıların yarı farkını bilinmeyen olarak seçerek çözümü basitleştirdiği açıktır; sorunu tamamlanmamış ikinci dereceden bir denklemin çözümüne indirgemeyi başarır (1).

1.3 Hindistan'da İkinci Dereceden Denklemler

İkinci dereceden denklemlerle ilgili problemler, Hintli matematikçi ve gökbilimci Aryabhatta tarafından 499 yılında derlenen “Aryabhattiam” astronomi incelemesinde zaten bulunmaktadır. Başka bir Hintli bilim adamı Brahmagupta (7. yüzyıl), şunları özetledi: genel kural Tek bir kanonik forma indirgenmiş ikinci dereceden denklemlerin çözümleri:

ah 2 + B x = c, a > 0. (1)

Denklem (1)'de katsayılar hariç A, aynı zamanda negatif de olabilir. Brahmagupta'nın kuralı aslında bizimkiyle aynı.

İÇİNDE Antik Hindistan Zor sorunların çözümünde halka açık yarışmalar yaygındı. Eski Hint kitaplarından biri bu tür yarışmalar hakkında şunları söylüyor: “Güneşin parlaklığıyla yıldızları gölgede bırakması gibi, bilgili bir adam da diğerinin ihtişamını gölgede bırakacaktır. halk meclisleri, cebirsel problemleri önermek ve çözmek. Sorunlar genellikle şiirsel biçimde sunuldu.

Bu, 12. yüzyılın ünlü Hintli matematikçisinin problemlerinden biridir. Bhaskarlar.

Sorun 13.

"Bir grup hareketli maymun ve asmaların arasında on iki tane...

Yemek yiyen yetkililer eğlendi. Zıplamaya, asılmaya başladılar...

Meydanda onlar var, sekizinci bölüm. Orada kaç tane maymun vardı?

Açıklıkta eğleniyordum. Söyle bana, bu pakette mi?

Bhaskara'nın çözümü, ikinci dereceden denklemlerin köklerinin iki değerli olduğunu bildiğini göstermektedir (Şekil 3).

Problem 13'e karşılık gelen denklem:

( X /8) 2 + 12 = X

Bhaskara kisvesi altında yazıyor:

x 2 - 64x = -768

ve bu denklemin sol tarafını kareye tamamlamak için her iki tarafa da ekleriz 32 2 , ardından şunu alıyorum:

x 2 - 64x + 32 2 = -768 + 1024,

(x - 32) 2 = 256,

x - 32 = ± 16,

x 1 = 16, x 2 = 48.

1.4 El - Khorezmi'de ikinci dereceden denklemler

El-Khorezmi'nin cebirsel eserinde doğrusal ve ikinci dereceden denklemlerin bir sınıflandırması verilmektedir. Yazar 6 tür denklem sayıyor ve bunları şu şekilde ifade ediyor:

1) “Kareler köklere eşittir” yani. balta 2 + c = B X.

2) “Kareler sayılara eşittir”, yani. balta 2 = c.

3) “Kökler sayıya eşittir” yani. ah = s.

4) “Kareler ve sayılar köklere eşittir” yani. balta 2 + c = B X.

5) “Kareler ve kökler sayılara eşittir”, yani. ah 2 + bx = s.

6) “Kökler ve sayılar karelere eşittir” yani. bx + c = eksen 2 .

Tüketimden kaçınan el-Khorezmi için negatif sayılar, bu denklemlerin her birinin terimleri çıkarılmaz, eklenir. Bu durumda pozitif çözümü olmayan denklemler elbette dikkate alınmaz. Yazar, bu denklemlerin çözümü için el-cebr ve el-mukabele tekniklerini kullanarak yöntemler ortaya koymaktadır. Onun kararları elbette bizimkilerle tamamen örtüşmüyor. Bunun tamamen retorik olduğundan bahsetmiyorum bile, örneğin birinci türden tamamlanmamış ikinci dereceden bir denklemi çözerken şunu belirtmek gerekir:

el-Khorezmi, 17. yüzyıldan önceki tüm matematikçiler gibi, sıfır çözümü hesaba katmıyor, çünkü muhtemelen belirli pratik problemlerde bunun bir önemi yok. İkinci dereceden denklemlerin tamamını çözerken, el-Khorezmi belirli sayısal örnekler ve ardından geometrik ispatlar kullanarak bunları çözmenin kurallarını ortaya koyuyor.

Sorun 14.“Kare ve 21 sayısı 10 köke eşittir. Kökü bulun" (x 2 + 21 = 10x denkleminin kökü anlamına gelir).

Yazarın çözümü şuna benziyor: kök sayısını ikiye bölerseniz 5 elde edersiniz, 5'i kendisiyle çarpın, sonuçtan 21 çıkarın, geriye 4 kalır. 4'ten kökü alın, 2 elde edersiniz. 5'ten 2 çıkarın. 3 elde edersiniz, bu istenen kök olacaktır. Veya 2'yi 5'e ekleyin, bu da 7'yi verir, bu da bir köktür.

El-Harezmi'nin eseri, ikinci dereceden denklemlerin sınıflandırılmasını sistematik olarak ortaya koyan ve bunların çözümü için formüller veren, bize ulaşan ilk kitaptır.

1.5 Avrupa'da ikinci dereceden denklemler XIII - XVII bb

Avrupa'da ikinci dereceden denklemlerin çözümüne yönelik formüller, ilk kez 1202 yılında İtalyan matematikçi Leonardo Fibonacci tarafından yazılan Abaküs Kitabı'nda El-Harezmi'ye göre ortaya konmuştur. Matematiğin etkisini yansıtan bu hacimli eser, hem İslam ülkelerinde hem de Antik Yunanistan, sunumun hem bütünlüğü hem de netliği ile ayırt edilir. Yazar bağımsız olarak problem çözme konusunda bazı yeni cebirsel örnekler geliştirdi ve Avrupa'da negatif sayıların tanıtılmasına yaklaşan ilk kişi oldu. Kitabı cebirsel bilginin sadece İtalya'da değil, Almanya, Fransa ve diğer Avrupa ülkelerinde de yayılmasına katkıda bulundu. Abaküs Kitabı'ndaki pek çok problem, 16. - 17. yüzyılların neredeyse tüm Avrupa ders kitaplarında kullanıldı. ve kısmen XVIII.

Tek bir kanonik forma indirgenmiş ikinci dereceden denklemleri çözmenin genel kuralı:

x 2 + bx = c,

katsayı işaretlerinin tüm olası kombinasyonları için B , İle Avrupa'da yalnızca 1544'te M. Stiefel tarafından formüle edildi.

İkinci dereceden bir denklemin çözümü için formülün genel formda türetilmesi Vieth'te mevcuttur, ancak Vieth yalnızca pozitif kökleri tanımıştır. İtalyan matematikçiler Tartaglia, Cardano, Bombelli 16. yüzyılın ilkleri arasındaydı. Olumlu olanların yanı sıra olumsuz kökler de dikkate alınır. Sadece 17. yüzyılda. Girard, Descartes, Newton ve diğerlerinin çalışmaları sayesinde bilim adamlarının yoluİkinci dereceden denklemlerin çözülmesi modern bir biçim alır.

1.6 Vieta teoremi hakkında

İkinci dereceden bir denklemin katsayıları ile kökleri arasındaki ilişkiyi ifade eden Vieta adını taşıyan teorem, ilk kez 1591 yılında kendisi tarafından şu şekilde formüle edilmiştir: “Eğer B + D, ile çarpıldı A - A 2 , eşittir BD, O A eşittir İÇİNDE ve eşit D ».

Vieta'yı anlamak için şunu hatırlamalıyız A Herhangi bir sesli harf gibi, bilinmeyen anlamına geliyordu (bizim X), sesli harfler İÇİNDE, D- bilinmeyene ait katsayılar. Modern cebir dilinde yukarıdaki Vieta formülasyonu şu anlama gelir: eğer varsa

(bir + B )x - x 2 = ab ,

x 2 - (bir + B )x + a B = 0,

x 1 = bir, x 2 = B .

Viète, denklemlerin kökleri ve katsayıları arasındaki ilişkiyi semboller kullanılarak yazılan genel formüllerle ifade ederek denklem çözme yöntemlerinde tekdüzelik sağladı. Ancak Viet'in sembolizmi hala bundan uzaktır. modern görünüm. Negatif sayıları tanımıyordu ve bu nedenle denklemleri çözerken yalnızca tüm köklerin pozitif olduğu durumları dikkate alıyordu.

2. İkinci dereceden denklemleri çözme yöntemleri

İkinci dereceden denklemler cebirin görkemli yapısının dayandığı temeldir. İkinci dereceden denklemler trigonometrik, üstel, logaritmik, irrasyonel ve aşkın denklemlerin ve eşitsizliklerin çözümünde yaygın olarak kullanılır. Okuldan (8. sınıftan) mezuniyete kadar ikinci dereceden denklemlerin nasıl çözüleceğini hepimiz biliyoruz.

İÇİNDE modern toplum kare değişkeni içeren denklemlerle işlem yapabilme yeteneği birçok faaliyet alanında faydalı olabilir ve bilimsel ve teknik gelişmelerde pratikte yaygın olarak kullanılır. Bunun kanıtı deniz ve nehir gemilerinin, uçakların ve roketlerin tasarımında bulunabilir. Bu tür hesaplamalar kullanılarak, uzay nesneleri de dahil olmak üzere çok çeşitli cisimlerin hareket yörüngeleri belirlenir. İkinci dereceden denklemlerin çözümüne ilişkin örnekler yalnızca ekonomik tahminlerde, binaların tasarımında ve yapımında değil, aynı zamanda en sıradan günlük koşullarda da kullanılmaktadır. Yürüyüş gezilerinde, spor etkinliklerinde, mağazalarda alışveriş yaparken ve diğer çok yaygın durumlarda bunlara ihtiyaç duyulabilir.

İfadeyi bileşen faktörlerine ayıralım

Bir denklemin derecesi, ifadenin içerdiği değişkenin derecesinin maksimum değeri ile belirlenir. 2'ye eşitse, böyle bir denklem ikinci dereceden olarak adlandırılır.

Formül diliyle konuşursak, belirtilen ifadeler, nasıl görünürse görünsün, ifadenin sol tarafı üç terimden oluştuğunda her zaman forma getirilebilir. Bunlar arasında: ax 2 (yani, katsayısı ile karesi olan bir değişken), bx (katsayısıyla karesi olmayan bir bilinmeyen) ve c (serbest bir bileşen, yani sıradan bir sayı). Sağ taraftaki tüm bunlar 0'a eşittir. Böyle bir polinomun, ax 2 hariç kendisini oluşturan terimlerden birinin eksik olması durumunda, buna tamamlanmamış ikinci dereceden denklem denir. Bu tür problemlerin çözümüne yönelik örneklerde öncelikle bulunması kolay olan değişkenlerin değerleri dikkate alınmalıdır.

İfadenin sağ tarafında iki terim var gibi görünüyorsa, daha doğrusu ax 2 ve bx, x'i bulmanın en kolay yolu değişkeni parantezlerin dışına çıkarmaktır. Şimdi denklemimiz şöyle görünecek: x(ax+b). Daha sonra, ya x=0 olduğu ya da problemin şu ifadeden bir değişken bulmakta olduğu açıkça ortaya çıkıyor: ax+b=0. Bu, çarpmanın özelliklerinden biri tarafından belirlenir. Kural, iki faktörün çarpımının yalnızca biri sıfır olduğunda 0 ile sonuçlanacağını belirtir.

Örnek

x=0 veya 8x - 3 = 0

Sonuç olarak denklemin iki kökünü elde ederiz: 0 ve 0,375.

Bu tür denklemler, koordinatların orijini olarak alınan belirli bir noktadan itibaren hareket etmeye başlayan yerçekiminin etkisi altındaki cisimlerin hareketini tanımlayabilir. Burada matematiksel gösterim şu biçimi alır: y = v 0 t + gt 2/2. Gerekli değerleri yerine koyarak, sağ tarafı 0'a eşitleyerek ve olası bilinmeyenleri bularak, cismin yükseldiği andan düştüğü ana kadar geçen süreyi ve daha birçok niceliği bulabilirsiniz. Ama bunu daha sonra konuşacağız.

Bir İfadeyi Faktoringe Alma

Yukarıda açıklanan kural, bu sorunları daha fazla çözmeyi mümkün kılar. zor vakalar. Bu tür ikinci dereceden denklemleri çözme örneklerine bakalım.

X 2 - 33x + 200 = 0

Bu ikinci dereceden üç terimli tamamlandı. Öncelikle ifadeyi dönüştürüp çarpanlarına ayıralım. Bunlardan iki tane var: (x-8) ve (x-25) = 0. Sonuç olarak elimizde 8 ve 25 olmak üzere iki kök var.

9. sınıfta ikinci dereceden denklemlerin çözümüne ilişkin örnekler, bu yöntemin yalnızca ikinci dereceden değil, üçüncü ve dördüncü dereceden ifadelerde de bir değişken bulmasına olanak tanır.

Örneğin: 2x 3 + 2x 2 - 18x - 18 = 0. Sağ tarafı değişkenli çarpanlara ayırdığımızda bunlardan üç tane vardır, yani (x+1), (x-3) ve (x+ 3).

Sonuç olarak bu denklemin üç kökü olduğu ortaya çıkıyor: -3; -1; 3.

Karekök

Başka bir vaka tamamlanmamış denklem ikinci sıra ise harf dilinde sağ tarafı ax 2 ve c bileşenlerinden oluşturulacak şekilde temsil edilen bir ifadedir. Burada değişkenin değerini elde etmek için serbest terim aktarılır. sağ taraf ve bundan sonra eşitliğin her iki tarafından da çıkarıyoruz karekök. Bu durumda genellikle denklemin iki kökü olduğuna dikkat edilmelidir. Tek istisna, değişkenin sıfıra eşit olduğu, hiç terim içermeyen eşitlikler ve sağ tarafın negatif olduğu ifadelerin çeşitleri olabilir. İkinci durumda, yukarıdaki eylemler köklerle gerçekleştirilemediğinden hiçbir çözüm yoktur. Bu tür ikinci dereceden denklemlerin çözüm örnekleri dikkate alınmalıdır.

Bu durumda denklemin kökleri -4 ve 4 sayıları olacaktır.

Arazi alanının hesaplanması

Bu tür hesaplamalara duyulan ihtiyaç eski zamanlarda ortaya çıktı, çünkü o uzak zamanlarda matematiğin gelişimi büyük ölçüde arazi parsellerinin alanlarını ve çevrelerini en yüksek doğrulukla belirleme ihtiyacıyla belirlendi.

Bu tür problemlere dayanarak ikinci dereceden denklemleri çözme örneklerini de düşünmeliyiz.

Diyelim ki uzunluğu genişliğinden 16 metre daha fazla olan dikdörtgen bir arsa var. Alanının 612 m 2 olduğunu biliyorsanız sitenin uzunluğunu, genişliğini ve çevresini bulmalısınız.

Başlamak için önce gerekli denklemi oluşturalım. Alanın genişliğini x ile gösterelim, uzunluğu (x+16) olur. Yazılmış olanlardan, alanın, problemimizin koşullarına göre 612 olan x(x+16) ifadesiyle belirlendiği anlaşılmaktadır. Bu, x(x+16) = 612 anlamına gelir.

İkinci dereceden denklemlerin tam çözümü, ki bu ifade tam da budur, aynı şekilde yapılamaz. Neden? Sol tarafta hala iki faktör bulunsa da çarpımları hiç 0'a eşit olmadığından burada farklı yöntemler kullanılıyor.

diskriminant

Öncelikle gerekli dönüşümleri yapalım, ardından dış görünüş Bu ifadenin şekli şöyle görünecektir: x 2 + 16x - 612 = 0. Bu, daha önce belirtilen standarda karşılık gelen formda, a=1, b=16, c=-612 olan bir ifade aldığımız anlamına gelir.

Bu, ikinci dereceden denklemleri bir diskriminant kullanarak çözmenin bir örneği olabilir. Burada gerekli hesaplamalar şemaya göre yapılır: D = b 2 - 4ac. Bu yardımcı miktar sadece ikinci dereceden bir denklemde gerekli miktarları bulmayı mümkün kılmakla kalmaz, aynı zamanda miktarı da belirler. olası seçenekler. D>0 ise iki tane vardır; D=0 için bir kök vardır. D durumunda<0, никаких шансов для решения у уравнения вообще не имеется.

Kökler ve formülleri hakkında

Bizim durumumuzda diskriminant şuna eşittir: 256 - 4(-612) = 2704. Bu, problemimizin bir cevabı olduğunu gösteriyor. Eğer k'yı biliyorsanız ikinci dereceden denklemlerin çözümüne aşağıdaki formül kullanılarak devam edilmelidir. Kökleri hesaplamanızı sağlar.

Bu, sunulan durumda şu anlama gelir: x 1 =18, x 2 =-34. Bu ikilemde ikinci seçenek çözüm olamaz çünkü arsanın boyutları negatif büyüklüklerle ölçülemez, yani x (yani arsanın genişliği) 18 m olur. Buradan uzunluğu hesaplıyoruz: 18. +16=34 ve çevre 2(34+ 18)=104(m2).

Örnekler ve görevler

İkinci dereceden denklemler çalışmamıza devam ediyoruz. Bunlardan birkaçının örnekleri ve ayrıntılı çözümleri aşağıda verilecektir.

1) 15x2 + 20x + 5 = 12x2 + 27x + 1

Her şeyi eşitliğin sol tarafına taşıyalım, bir dönüşüm yapalım yani standart denilen denklem türünü elde edip sıfıra eşitleyelim.

15x 2 + 20x + 5 - 12x 2 - 27x - 1 = 0

Benzerlerini toplayarak diskriminantı belirliyoruz: D = 49 - 48 = 1. Bu, denklemimizin iki kökü olacağı anlamına gelir. Bunları yukarıdaki formüle göre hesaplayalım, yani birincisi 4/3'e, ikincisi ise 1'e eşit olacaktır.

2) Şimdi farklı türden gizemleri çözelim.

Burada herhangi bir kök olup olmadığını bulalım x 2 - 4x + 5 = 1? Kapsamlı bir cevap elde etmek için polinomu karşılık gelen olağan forma indirgeyelim ve diskriminantı hesaplayalım. Yukarıdaki örnekte ikinci dereceden denklemi çözmeye gerek yoktur çünkü sorunun özü bu değildir. Bu durumda D = 16 - 20 = -4, yani gerçekte köklerin olmadığı anlamına gelir.

Vieta teoremi

İkinci dereceden denklemleri yukarıdaki formülleri ve diskriminantı kullanarak, ikincisinin değerinden karekök alındığında çözmek uygundur. Ancak bu her zaman gerçekleşmez. Ancak bu durumda değişkenlerin değerlerini elde etmenin birçok yolu vardır. Örnek: Vieta teoremini kullanarak ikinci dereceden denklemleri çözme. Adını 16. yüzyılda Fransa'da yaşayan ve matematik yeteneği ve saraydaki bağlantıları sayesinde parlak bir kariyere sahip olan bir kişiden almıştır. Portresi makalede görülebilir.

Ünlü Fransız'ın fark ettiği desen şu şekildeydi. Denklemin köklerinin sayısal olarak toplamının -p=b/a olduğunu ve çarpımlarının q=c/a'ya karşılık geldiğini kanıtladı.

Şimdi belirli görevlere bakalım.

3x2 + 21x - 54 = 0

Basit olması açısından ifadeyi dönüştürelim:

x 2 + 7x - 18 = 0

Vieta teoremini kullanalım, bu bize şunu verecektir: Köklerin toplamı -7 ve çarpımı -18'dir. Buradan denklemin köklerinin -9 ve 2 sayıları olduğunu anlıyoruz. Kontrol ettikten sonra bu değişken değerlerinin gerçekten ifadeye uyduğundan emin olacağız.

Parabol grafiği ve denklemi

İkinci dereceden fonksiyon ve ikinci dereceden denklem kavramları yakından ilişkilidir. Bunun örnekleri daha önce verilmişti. Şimdi bazı matematik bilmecelerine biraz daha detaylı bakalım. Tanımlanan türdeki herhangi bir denklem görsel olarak temsil edilebilir. Grafik olarak çizilen böyle bir ilişkiye parabol denir. Çeşitli türleri aşağıdaki şekilde gösterilmektedir.

Her parabolün bir tepe noktası, yani dallarının çıktığı bir nokta vardır. Eğer a>0 ise, sonsuza kadar yükselirler ve<0, они рисуются вниз. Простейшим примером подобной зависимости является функция y = x 2 . В данном случае в уравнении x 2 =0 неизвестное может принимать только одно значение, то есть х=0, а значит существует только один корень. Это неудивительно, ведь здесь D=0, потому что a=1, b=0, c=0. Выходит формула корней (точнее одного корня) квадратного уравнения запишется так: x = -b/2a.

Fonksiyonların görsel temsilleri, ikinci dereceden denklemler de dahil olmak üzere tüm denklemlerin çözülmesine yardımcı olur. Bu yönteme grafik denir. x değişkeninin değeri ise grafik çizgisinin 0x ile kesiştiği noktalardaki apsis koordinatıdır. Tepe noktasının koordinatları az önce verilen x 0 = -b/2a formülü kullanılarak bulunabilir. Ve ortaya çıkan değeri fonksiyonun orijinal denkleminde değiştirerek, y 0'ı, yani ordinat eksenine ait olan parabolün tepe noktasının ikinci koordinatını bulabilirsiniz.

Bir parabolün dallarının apsis ekseni ile kesişimi

İkinci dereceden denklemleri çözmenin birçok örneği vardır, ancak aynı zamanda genel modeller de vardır. Şimdi onlara bakalım. a>0 için grafiğin 0x ekseniyle kesişmesinin ancak y 0 alınması durumunda mümkün olduğu açıktır. negatif değerler. Ve bir için<0 координата у 0 должна быть положительна. Для указанных вариантов D>0. Aksi takdirde D<0. А когда D=0, вершина параболы расположена непосредственно на оси 0х.

Parabolün grafiğinden kökleri de belirleyebilirsiniz. Bunun tersi de doğrudur. Yani ikinci dereceden bir fonksiyonun görsel temsilini elde etmek kolay değilse ifadenin sağ tarafını 0'a eşitleyebilir ve ortaya çıkan denklemi çözebilirsiniz. Ve 0x ekseni ile kesişme noktalarını bilerek bir grafik oluşturmak daha kolaydır.

Tarihten

Eskiden kare değişkeni içeren denklemleri kullanarak sadece matematiksel hesaplamalar yapmakla kalmıyor, geometrik şekillerin alanlarını da belirliyorlardı. Kadim insanlar, fizik ve astronomi alanlarındaki büyük keşiflerin yanı sıra astrolojik tahminler yapmak için de bu tür hesaplamalara ihtiyaç duyuyorlardı.

Modern bilim adamlarının önerdiği gibi, Babil sakinleri ikinci dereceden denklemleri ilk çözenler arasındaydı. Bu, çağımızdan dört yüzyıl önce oldu. Elbette onların hesaplamaları şu anda kabul edilenlerden kökten farklıydı ve çok daha ilkel olduğu ortaya çıktı. Örneğin Mezopotamyalı matematikçilerin negatif sayıların varlığından haberleri yoktu. Ayrıca herhangi bir modern okul çocuğunun bildiği diğer inceliklere de aşina değillerdi.

Belki de Babil'deki bilim adamlarından bile daha önce, Hintli bilge Baudhayama ikinci dereceden denklemleri çözmeye başlamıştı. Bu, İsa'nın döneminden yaklaşık sekiz yüzyıl önce gerçekleşti. Doğru, ikinci dereceden denklemler, verdiği çözme yöntemleri en basitleriydi. Onun yanı sıra Çinli matematikçiler de eski günlerde benzer sorularla ilgileniyorlardı. Avrupa'da ikinci dereceden denklemler ancak 13. yüzyılın başında çözülmeye başlandı, ancak daha sonra Newton, Descartes ve diğerleri gibi büyük bilim adamları tarafından çalışmalarında kullanıldılar.



İlgili yayınlar