Bir dik üçgende bir dar açının kosinüsüne denir. Sinüs, kosinüs, tanjant ve kotanjantın tanımı

Trigonometri, matematik biliminin bir dalıdır ve trigonometrik fonksiyonlar ve geometride kullanımı. Trigonometrinin gelişimi antik Yunan'da başladı. Orta Çağ boyunca önemli katkı Orta Doğu ve Hindistan'dan bilim adamları bu bilimin gelişmesine katkıda bulundular.

Bu makale trigonometrinin temel kavramlarına ve tanımlarına ayrılmıştır. Temel trigonometrik fonksiyonların tanımlarını tartışır: sinüs, kosinüs, tanjant ve kotanjant. Anlamları geometri bağlamında açıklanmış ve gösterilmiştir.

Yandex.RTB R-A-339285-1

Başlangıçta argümanı açı olan trigonometrik fonksiyonların tanımları bir dik üçgenin kenarlarının oranı cinsinden ifade ediliyordu.

Trigonometrik fonksiyonların tanımları

Bir açının sinüsü (sin α), bu açının karşısındaki kenarın hipotenüse oranıdır.

Açının kosinüsü (cos α) - oran bitişik bacak hipotenüse.

Açı teğeti (t g α) - karşı tarafın bitişik tarafa oranı.

Açı kotanjantı (c t g α) - bitişik tarafın karşı tarafa oranı.

Bu tanımlar bir dik üçgenin dar açısı için verilmiştir!

Bir örnek verelim.

C dik açılı ABC üçgeninde, A açısının sinüsü, BC kenarının AB hipotenüsüne oranına eşittir.

Sinüs, kosinüs, teğet ve kotanjant tanımları, bu fonksiyonların değerlerini üçgenin kenarlarının bilinen uzunluklarından hesaplamanıza olanak tanır.

Hatırlanması önemli!

Sinüs ve kosinüs değerlerinin aralığı -1'den 1'e kadardır. Yani sinüs ve kosinüs -1'den 1'e kadar değerler alır. Teğet ve kotanjantın değer aralığı sayı doğrusunun tamamıdır, yani bu işlevler herhangi bir değeri alabilir.

Yukarıda verilen tanımlar dar açılar için geçerlidir. Trigonometride, değeri dar açıdan farklı olarak 0 ila 90 derece ile sınırlı olmayan dönme açısı kavramı tanıtıldı. Derece veya radyan cinsinden dönme açısı - ∞ ila + ∞ arasında herhangi bir gerçek sayı ile ifade edilir.

Bu bağlamda keyfi büyüklükte bir açının sinüs, kosinüs, tanjant ve kotanjantını tanımlayabiliriz. Merkezi Kartezyen koordinat sisteminin başlangıç ​​noktasında olan bir birim çember düşünelim.

Koordinatları (1, 0) olan başlangıç ​​noktası A, birim çemberin merkezi etrafında belirli bir α açısı boyunca döner ve A 1 noktasına gider. Tanım A 1 (x, y) noktasının koordinatları cinsinden verilmiştir.

Dönme açısının sinüsü (sinüsü)

Dönme açısı α'nın sinüsü, A1 (x, y) noktasının ordinatıdır. günah α = y

Dönme açısının kosinüsü (cos)

Dönme açısı α'nın kosinüsü, A1 (x, y) noktasının apsisidir. çünkü α = x

Dönme açısının tanjantı (tg)

Dönme açısı α'nın tanjantı, A1 (x, y) noktasının ordinatının apsisine oranıdır. t g α = y x

Dönme açısının kotanjantı (ctg)

Dönme açısı α'nın kotanjantı, A1 noktasının (x, y) apsisinin ordinatına oranıdır. c t g α = x y

Sinüs ve kosinüs herhangi bir dönüş açısı için tanımlanır. Bu mantıklıdır çünkü bir noktanın dönme sonrasında apsisi ve ordinatı herhangi bir açıda belirlenebilir. Teğet ve kotanjant için durum farklıdır. Döndürme sonrasında bir nokta sıfır apsisli (0, 1) ve (0, - 1) bir noktaya gittiğinde teğet tanımsızdır. Bu gibi durumlarda, t g α = y x teğet ifadesi, sıfıra bölünmeyi içerdiği için anlamsızdır. Durum kotanjant için de benzerdir. Aradaki fark, bir noktanın ordinatının sıfıra gittiği durumlarda kotanjantın tanımlı olmamasıdır.

Hatırlanması önemli!

Sinüs ve kosinüs herhangi bir α açısı için tanımlanır.

Teğet, α = 90° + 180° k, k ∈ Z (α = π 2 + π k, k ∈ Z) dışındaki tüm açılar için tanımlanır.

Kotanjant, α = 180° k, k ∈ Z (α = π k, k ∈ Z) dışındaki tüm açılar için tanımlanır.

Pratik örnekleri çözerken “α dönme açısının sinüsü” demeyin. "Dönme açısı" kelimeleri basitçe atlanmıştır, bu da neyin tartışıldığının bağlamdan zaten açıkça anlaşıldığını ima etmektedir.

Sayılar

Bir sayının dönme açısından ziyade sinüs, kosinüs, tanjant ve kotanjantını belirlemeye ne dersiniz?

Bir sayının sinüs, kosinüs, tanjant, kotanjantı

Bir sayının sinüs, kosinüs, tanjant ve kotanjantı T sırasıyla sinüs, kosinüs, teğet ve kotanjanta eşit olan bir sayıdır. T radyan.

Örneğin, 10 π sayısının sinüsü, 10 π rad dönme açısının sinüsüne eşittir.

Bir sayının sinüsünü, kosinüsünü, tanjantını ve kotanjantını belirlemeye yönelik başka bir yaklaşım daha vardır. Şimdi ona daha yakından bakalım.

Herhangi bir gerçek sayı T Birim çember üzerindeki bir nokta, dikdörtgen Kartezyen koordinat sisteminin başlangıç ​​noktasındaki merkezle ilişkilidir. Sinüs, kosinüs, tanjant ve kotanjant bu noktanın koordinatları üzerinden belirlenir.

Çemberin başlangıç ​​noktası koordinatları (1, 0) olan A noktasıdır.

Pozitif sayı T

Negatif sayı T başlangıç ​​noktasının daire etrafında saat yönünün tersine hareket etmesi ve t yolunu geçmesi durumunda gideceği noktaya karşılık gelir.

Artık bir sayı ile bir daire üzerindeki bir nokta arasındaki bağlantı kurulduğuna göre sinüs, kosinüs, teğet ve kotanjantın tanımına geçiyoruz.

T'nin sinüsü (günahı)

Bir sayının sinüsü T- birim çember üzerinde sayıya karşılık gelen bir noktanın koordinatı T. günah t = y

Kosinüs (cos) t

Bir sayının kosinüsü T- birim çemberin sayıya karşılık gelen noktasının apsisi T. çünkü t = x

T'nin tanjantı (tg)

Bir sayının tanjantı T- birim çember üzerindeki sayıya karşılık gelen bir noktanın ordinatının apsisine oranı T. t g t = y x = sin t çünkü t

En son tanımlar bu paragrafın başında verilen tanıma uygundur ve çelişmez. Sayıya karşılık gelen dairenin üzerine gelin T, bir açıyla döndükten sonra başlangıç ​​noktasının gittiği noktaya denk gelir T radyan.

Açısal ve sayısal argümanın trigonometrik fonksiyonları

α açısının her değeri, bu açının sinüs ve kosinüsünün belirli bir değerine karşılık gelir. α = 90° + 180°k dışındaki tüm α açıları gibi, k ∈ Z (α = π 2 + π k, k ∈ Z) belirli bir teğet değerine karşılık gelir. Kotanjant, yukarıda belirtildiği gibi, α = 180° k, k ∈ Z (α = π k, k ∈ Z) dışındaki tüm α'lar için tanımlanır.

sin α, cos α, t g α, c t g α'nın alfa açısının fonksiyonları veya açısal argümanın fonksiyonları olduğunu söyleyebiliriz.

Benzer şekilde sinüs, kosinüs, tanjant ve kotanjanttan sayısal bir argümanın fonksiyonları olarak bahsedebiliriz. Her gerçek sayı T bir sayının sinüs veya kosinüsünün belirli bir değerine karşılık gelir T. π 2 + π · k, k ∈ Z dışındaki tüm sayılar bir teğet değere karşılık gelir. Benzer şekilde kotanjant, π · k, k ∈ Z dışındaki tüm sayılar için tanımlanır.

Trigonometrinin temel fonksiyonları

Sinüs, kosinüs, tanjant ve kotanjant temel trigonometrik fonksiyonlardır.

Trigonometrik fonksiyonun hangi argümanıyla (açısal argüman veya sayısal argüman) uğraştığımız bağlamdan genellikle açıktır.

En başta verilen tanımlara ve 0 ila 90 derece aralığında yer alan alfa açısına dönelim. Sinüs, kosinüs, tanjant ve kotanjantın trigonometrik tanımları tamamen tutarlıdır. geometrik tanımlar, bir dik üçgenin en boy oranları kullanılarak verilmiştir. Hadi gösterelim.

Dikdörtgen Kartezyen koordinat sisteminde merkezi olan bir birim çemberi ele alalım. A (1, 0) başlangıç ​​noktasını 90 dereceye kadar bir açıyla döndürelim ve ortaya çıkan A 1 (x, y) noktasından apsis eksenine dik bir çizelim. Ortaya çıkan dik üçgende A 1 O H açısı açıya eşitα'yı döndürdüğünüzde, O H ayağının uzunluğu A 1 (x, y) noktasının apsisine eşittir. Açının karşısındaki bacağın uzunluğu A 1 (x, y) noktasının ordinatına eşittir ve birim dairenin yarıçapı olduğu için hipotenüsün uzunluğu bire eşittir.

Geometrideki tanıma uygun olarak, α açısının sinüsü karşı tarafın hipotenüse oranına eşittir.

sin α = A 1 H O A 1 = y 1 = y

Bu, bir dik üçgende bir dar açının sinüsünü en boy oranı aracılığıyla belirlemenin, alfa 0 ila 90 derece aralığında yer alırken, dönme açısı a'nın sinüsünü belirlemeye eşdeğer olduğu anlamına gelir.

Benzer şekilde kosinüs, tanjant ve kotanjant için tanımların uygunluğu gösterilebilir.

Metinde bir hata fark ederseniz, lütfen onu vurgulayın ve Ctrl+Enter tuşlarına basın.

Trigonometri çalışmamıza dik üçgenle başlayacağız. Bir akut açının teğet ve kotanjantının yanı sıra sinüs ve kosinüsün ne olduğunu tanımlayalım. Bu trigonometrinin temelidir.

şunu hatırlatalım dik açı 90 dereceye eşit bir açıdır. Başka bir deyişle, yarım dönüş açısı.

Dar açı- 90 dereceden az.

Geniş açı- 90 dereceden büyük. Böyle bir açıyla ilgili olarak "geniş" hakaret değil matematiksel bir terimdir :-)

Bir dik üçgen çizelim. Dik açı genellikle ile gösterilir. Lütfen köşenin karşısındaki tarafın aynı harfle, yalnızca küçük olarak gösterildiğini unutmayın. Böylece A açısının karşısındaki taraf gösterilir.

Açı karşılık gelen Yunanca harfle gösterilir.

Hipotenüs bir dik üçgenin karşısındaki kenardır dik açı.

Bacaklar- dar açıların karşısında yer alan kenarlar.

Açının karşısında uzanan bacağa denir zıt(açıya göre). Açının kenarlarından birinde yer alan diğer bacağa denir. bitişik.

Sinüs Bir dik üçgende dar açı, karşı kenarın hipotenüse oranıdır:

Kosinüs Dik üçgende dar açı - bitişik bacağın hipotenüse oranı:

Teğet dik üçgende dar açı - karşı tarafın bitişik tarafa oranı:

Başka bir (eşdeğer) tanım: bir dar açının tanjantı, açının sinüsünün kosinüsüne oranıdır:

Kotanjant dik üçgende dar açı - bitişik tarafın karşı tarafa oranı (veya aynı şekilde kosinüsün sinüse oranı):

Aşağıdaki sinüs, kosinüs, teğet ve kotanjant için temel ilişkilere dikkat edin. Sorunları çözerken bize faydalı olacaklar.

Bunlardan bazılarını kanıtlayalım.

Tamam, tanımları verdik ve formülleri yazdık. Peki neden hala sinüs, kosinüs, teğet ve kotanjanta ihtiyacımız var?

Bunu biliyoruz herhangi bir üçgenin açılarının toplamı eşittir.

arasındaki ilişkiyi biliyoruz. partiler sağ üçgen. Bu Pisagor teoremidir: .

Bir üçgendeki iki açıyı bilerek üçüncüyü bulabileceğiniz ortaya çıktı. Bir dik üçgenin iki kenarını bilerek üçüncüsünü bulabilirsiniz. Bu, açıların kendi oranlarına ve kenarların kendilerine ait olduğu anlamına gelir. Peki, bir dik üçgende bir açıyı (dik açı hariç) ve bir kenarı biliyorsanız ancak diğer kenarları bulmanız gerekiyorsa ne yapmalısınız?

Geçmişte insanların bölgenin ve yıldızlı gökyüzünün haritasını çıkarırken karşılaştığı şey budur. Sonuçta bir üçgenin tüm kenarlarını doğrudan ölçmek her zaman mümkün değildir.

Sinüs, kosinüs ve teğet - bunlara aynı zamanda denir trigonometrik açı fonksiyonları-arasındaki ilişkileri vermek partiler Ve köşelerüçgen. Açıyı bilerek, tüm trigonometrik fonksiyonlarını özel tablolar kullanarak bulabilirsiniz. Ve bir üçgenin açılarının ve kenarlarından birinin sinüslerini, kosinüslerini ve teğetlerini bilerek gerisini bulabilirsiniz.

Ayrıca 'iyi' açılar için sinüs, kosinüs, tanjant ve kotanjant değerlerinin bir tablosunu da çizeceğiz.

Lütfen tablodaki iki kırmızı çizgiye dikkat edin. Uygun açı değerlerinde teğet ve kotanjant mevcut değildir.

FIPI Görev Bankasındaki çeşitli trigonometri problemlerine bakalım.

1. Bir üçgende açı , dir. Bulmak .

Sorun dört saniyede çözüldü.

O zamandan beri , .

2. Bir üçgende açı , , dir. Bulmak .

Bunu Pisagor teoremini kullanarak bulalım.

Sorun çözüldü.

Genellikle problemlerde açılı ve veya açılı üçgenler vardır. Onlar için temel oranları ezbere hatırlayın!

Açıları olan bir üçgen için ve açının karşısındaki bacak eşittir hipotenüsün yarısı.

Açıları olan ve ikizkenar olan bir üçgen. İçinde hipotenüs bacaktan kat kat daha büyüktür.

Dik üçgenleri çözme, yani bilinmeyen kenarları veya açıları bulma problemlerine baktık. Ama hepsi bu değil! İÇİNDE Birleşik Devlet Sınavı seçenekleri matematikte bir üçgenin dış açısının sinüs, kosinüs, tanjant veya kotanjantının ortaya çıktığı birçok problem vardır. Bir sonraki makalede bu konuda daha fazla bilgi vereceğiz.


Bu yazıda nasıl verileceğini göstereceğiz Trigonometride bir açının sinüs, kosinüs, tanjant ve kotanjant tanımları ve sayı. Burada notasyonlardan bahsedeceğiz, girdi örnekleri vereceğiz ve grafiksel çizimler vereceğiz. Sonuç olarak trigonometri ve geometrideki sinüs, kosinüs, tanjant ve kotanjant tanımları arasında bir paralellik kuralım.

Sayfada gezinme.

Sinüs, kosinüs, tanjant ve kotanjantın tanımı

Sinüs, kosinüs, teğet ve kotanjant fikrinin nasıl oluştuğunu görelim. okul kursu matematik. Geometri derslerinde dik üçgende dar bir açının sinüs, kosinüs, tanjant ve kotanjantının tanımı verilmektedir. Daha sonra dönme açısının ve sayısının sinüs, kosinüs, teğet ve kotanjantından bahseden trigonometri incelenir. Tüm bu tanımları sunalım, örnekler verelim ve gerekli yorumları verelim.

Dik üçgende dar açı

Geometri dersinden dik üçgendeki dar açının sinüs, kosinüs, tanjant ve kotanjantının tanımlarını biliyoruz. Bir dik üçgenin kenarlarının oranı olarak verilirler. Formülasyonlarını verelim.

Tanım.

Dik üçgende dar açının sinüsü karşı kenarın hipotenüse oranıdır.

Tanım.

Dik üçgende dar açının kosinüsü bitişik bacağın hipotenüse oranıdır.

Tanım.

Dik üçgende dar açının tanjantı– karşı tarafın bitişik tarafa oranıdır.

Tanım.

Bir dik üçgende dar açının kotanjantı- bu, bitişik tarafın karşı tarafa oranıdır.

Sinüs, kosinüs, tanjant ve kotanjant tanımları da burada tanıtılmıştır - sırasıyla sin, cos, tg ve ctg.

Örneğin, ABC dik açılı bir dik üçgense, A dar açısının sinüsü karşı BC kenarının AB hipotenüsüne oranına eşittir, yani sin∠A=BC/AB.

Bu tanımlar, bir dik üçgenin kenarlarının bilinen uzunluklarından ve ayrıca sinüs, kosinüs, tanjantın bilinen değerlerinden, akut bir açının sinüs, kosinüs, tanjant ve kotanjant değerlerini hesaplamanıza olanak tanır. diğer kenarların uzunluklarını bulmak için kotanjant ve kenarlardan birinin uzunluğu. Örneğin, bir dik üçgende AC kenarının 3'e ve AB hipotenüsünün 7'ye eşit olduğunu bilseydik, dar açı A'nın kosinüsünün değerini tanım gereği hesaplayabilirdik: cos∠A=AC/ AB=3/7.

Dönme açısı

Trigonometride açıya daha geniş bakmaya başlarlar - dönme açısı kavramını tanıtırlar. Dönme açısının büyüklüğü, dar açıdan farklı olarak 0 ila 90 derece ile sınırlı değildir; derece cinsinden (ve radyan cinsinden) dönme açısı -∞'dan +∞'a kadar herhangi bir gerçek sayı ile ifade edilebilir.

Bu açıdan sinüs, kosinüs, tanjant ve kotanjant tanımları dar bir açıya göre değil, isteğe bağlı büyüklükte bir açıya (dönme açısına) göre verilmiştir. Bunlar, dikdörtgen Kartezyen koordinat sisteminin başlangıcı olan O noktası etrafında bir α açısı kadar döndükten sonra sözde başlangıç ​​noktası A(1, 0)'ın gittiği A 1 noktasının x ve y koordinatları aracılığıyla verilir. ve birim çemberin merkezi.

Tanım.

Dönme açısının sinüsüα, A1 noktasının koordinatıdır, yani sinα=y.

Tanım.

Dönme açısının kosinüsüα'ya A 1 noktasının apsisi denir, yani cosα=x.

Tanım.

Dönme açısının tanjantıα, A1 noktasının ordinatının apsisine oranıdır, yani tanα=y/x.

Tanım.

Dönme açısının kotanjantıα, A1 noktasının apsisinin ordinatına oranıdır, yani ctgα=x/y.

Sinüs ve kosinüs herhangi bir α açısı için tanımlanır, çünkü başlangıç ​​noktasının α açısı kadar döndürülmesiyle elde edilen noktanın apsisini ve ordinatını her zaman belirleyebiliriz. Ancak teğet ve kotanjant herhangi bir açı için tanımlanmamıştır. Başlangıç ​​noktasının sıfır apsisli (0, 1) veya (0, −1) bir noktaya gittiği α açıları için tanjant tanımlanmamıştır ve bu, 90°+180° k, k∈Z (π) açılarında meydana gelir. /2+π·k rad). Aslında bu tür dönme açılarında tgα=y/x ifadesi sıfıra bölünmeyi içerdiğinden bir anlam ifade etmemektedir. Kotanjanta gelince, başlangıç ​​noktasının sıfır koordinatlı (1, 0) veya (−1, 0) noktaya gittiği α açıları için tanımlanmamıştır ve bu, 180° k, k ∈Z açıları için meydana gelir. (π·k rad).

Yani herhangi bir dönme açısı için sinüs ve kosinüs tanımlanır, 90°+180°k dışındaki tüm açılar için teğet tanımlanır, k∈Z (π/2+πk rad) ve 180° ·k dışındaki tüm açılar için kotanjant tanımlanır , k∈Z (π·k rad).

Tanımlar, bizim tarafımızdan zaten bilinen sin, cos, tg ve ctg tanımlarını içerir; bunlar aynı zamanda sinüs, kosinüs, teğet ve dönme açısının kotanjantını belirtmek için de kullanılır (bazen tan ve cot tanımlarını teğet ve kotanjanta karşılık gelen olarak bulabilirsiniz) . Dolayısıyla 30 derecelik bir dönme açısının sinüsü sin30° olarak yazılabilir, tg(−24°17') ve ctgα girdileri −24 derece 17 dakika dönme açısının tanjantına ve dönme açısı α'nın kotanjantına karşılık gelir. . Bir açının radyan ölçüsünü yazarken "rad" ifadesinin sıklıkla atlandığını hatırlayın. Örneğin, üç pi rad'lık bir dönme açısının kosinüsü genellikle cos3·π olarak gösterilir.

Bu noktanın sonucu olarak, dönme açısının sinüs, kosinüs, tanjant ve kotanjantından bahsederken "dönme açısı" ifadesinin veya "dönme" kelimesinin sıklıkla atlandığını belirtmekte fayda var. Yani, "dönme açısı alfanın sinüsü" ifadesi yerine genellikle "alfa açısının sinüsü" veya daha kısası "sinüs alfa" ifadesi kullanılır. Aynı durum kosinüs, teğet ve kotanjant için de geçerlidir.

Ayrıca bir dik üçgende bir dar açının sinüs, kosinüs, tanjant ve kotanjant tanımlarının, 0 ila 90 derece arasındaki bir dönme açısının sinüs, kosinüs, tanjant ve kotanjant için verilen tanımlarla tutarlı olduğunu söyleyeceğiz. Bunu meşrulaştıracağız.

Sayılar

Tanım.

Bir sayının sinüs, kosinüs, tanjant ve kotanjantı t, dönme açısının sırasıyla t radyan cinsinden sinüs, kosinüs, tanjant ve kotanjantına eşit bir sayıdır.

Örneğin, 8·π sayısının kosinüsü, tanım gereği, 8·π rad açısının kosinüsüne eşit bir sayıdır. Ve 8·π rad açısının kosinüsü bire eşittir, dolayısıyla 8·π sayısının kosinüsü 1'e eşittir.

Bir sayının sinüsünü, kosinüsünü, tanjantını ve kotanjantını belirlemeye yönelik başka bir yaklaşım daha vardır. Her t gerçek sayısının, dikdörtgen koordinat sisteminin başlangıcında merkezi olan birim çember üzerindeki bir nokta ile ilişkilendirilmesi ve sinüs, kosinüs, teğet ve kotanjantın bu noktanın koordinatları aracılığıyla belirlenmesinden oluşur. Buna daha detaylı bakalım.

Gerçek sayılar ile çember üzerindeki noktalar arasında nasıl bir ilişki kurulduğunu gösterelim:

  • 0 sayısına A(1, 0) başlangıç ​​noktası atanır;
  • pozitif sayı t, başlangıç ​​noktasından saat yönünün tersine daire boyunca hareket edersek ve t uzunluğunda bir yolda yürürsek ulaşacağımız birim daire noktasına atanır;
  • negatif sayı t birim çemberin noktasıyla ilişkilidir; başlangıç ​​noktasından itibaren daire boyunca saat yönünde hareket edersek ve |t| uzunluğunda bir yolda yürürsek bu noktaya ulaşacağız. .

Şimdi t sayısının sinüs, kosinüs, tanjant ve kotanjant tanımlarına geçiyoruz. t sayısının A 1 (x, y) çemberi üzerinde bir noktaya karşılık geldiğini varsayalım (örneğin &pi/2; sayısı A 1 (0, 1) noktasına karşılık gelir).

Tanım.

Sayının sinüsü t, birim çember üzerinde t sayısına karşılık gelen noktanın koordinatıdır, yani sint=y.

Tanım.

Sayının kosinüsü t'ye birim çemberin t sayısına karşılık gelen noktasının apsisi denir, yani maliyet=x.

Tanım.

Sayının tanjantı t, birim çember üzerinde t sayısına karşılık gelen bir noktanın ordinatının apsisine oranıdır, yani tgt=y/x. Başka bir eşdeğer formülasyonda, bir t sayısının tanjantı, bu sayının sinüsünün kosinüse oranıdır, yani tgt=sint/maliyettir.

Tanım.

Sayının kotanjantı t, apsisin birim çember üzerindeki t sayısına karşılık gelen bir noktanın ordinatına oranıdır, yani ctgt=x/y. Başka bir formülasyon şudur: t sayısının tanjantı, t sayısının kosinüsünün t sayısının sinüsüne oranıdır: ctgt=maliyet/sint.

Burada az önce verilen tanımların bu paragrafın başında verilen tanımla tutarlı olduğunu görüyoruz. Aslında birim çember üzerinde t sayısına karşılık gelen nokta, başlangıç ​​noktasının t radyan açıyla döndürülmesiyle elde edilen noktayla çakışmaktadır.

Bu noktayı yine de açıklığa kavuşturmakta fayda var. Diyelim ki sin3 girişimiz var. 3 sayısının sinüsünden mi, yoksa 3 radyanlık dönme açısının sinüsünden mi bahsettiğimizi nasıl anlayabiliriz? Bu genellikle bağlamdan açıkça anlaşılır, aksi halde muhtemelen temel bir öneme sahip değildir.

Açısal ve sayısal argümanın trigonometrik fonksiyonları

Önceki paragrafta verilen tanımlara göre, her bir dönme açısı α, cosα değerinin yanı sıra çok spesifik bir sinα değerine de karşılık gelir. Ayrıca 90°+180°k, k∈Z (π/2+πk rad) dışındaki tüm dönüş açıları tgα değerlerine, 180°k dışındaki tüm dönüş açıları ise k∈Z (πk rad ) – değerlere karşılık gelir. ctga'dan. Bu nedenle sinα, cosα, tanα ve ctgα, α açısının fonksiyonlarıdır. Başka bir deyişle bunlar açısal argümanın işlevleridir.

Sayısal bir argümanın sinüs, kosinüs, tanjant ve kotanjant fonksiyonları hakkında da benzer şekilde konuşabiliriz. Gerçekte, her t gerçek sayısı çok spesifik bir sint değerine ve maliyete karşılık gelir. Ek olarak, π/2+π·k, k∈Z dışındaki tüm sayılar tgt değerlerine ve π·k, k∈Z sayıları - ctgt değerlerine karşılık gelir.

Sinüs, kosinüs, tanjant ve kotanjant fonksiyonlarına denir temel trigonometrik fonksiyonlar.

Açısal bir argümanın trigonometrik fonksiyonlarıyla mı yoksa sayısal bir argümanla mı uğraştığımız bağlamdan genellikle açıktır. Aksi takdirde bağımsız değişkeni hem açının bir ölçüsü (açısal argüman) hem de sayısal bir argüman olarak düşünebiliriz.

Ancak okulda esas olarak sayısal fonksiyonları, yani argümanları ve karşılık gelen fonksiyon değerleri sayı olan fonksiyonları inceliyoruz. Bu nedenle eğer hakkında konuşuyoruzözellikle fonksiyonlarla ilgili olarak, trigonometrik fonksiyonların sayısal argümanların fonksiyonları olarak dikkate alınması tavsiye edilir.

Geometri ve trigonometri tanımları arasındaki ilişki

Dönme açısı α'nın 0 ila 90 derece arasında değiştiğini düşünürsek, trigonometri bağlamında dönme açısının sinüs, kosinüs, tanjant ve kotanjant tanımları bir sinüs, kosinüs, tanjant ve kotanjant tanımlarıyla tamamen tutarlıdır. Geometri dersinde verilen dik üçgende dar açı. Bunu meşrulaştıralım.

Birim çemberi dikdörtgen Kartezyen koordinat sistemi Oxy'de gösterelim. Başlangıç ​​noktasını A(1, 0) olarak işaretleyelim. Bunu 0 ila 90 derece arasında değişen bir α açısı kadar döndürelim, A 1 (x, y) noktasını elde ederiz. A 1 H dikmesini A 1 noktasından Ox eksenine bırakalım.

Dik bir üçgende A 1 OH açısının a dönme açısına eşit olduğunu, bu açıya bitişik OH bacağının uzunluğunun A 1 noktasının apsisine eşit olduğunu, yani |OH olduğunu görmek kolaydır. |=x, açının karşısındaki A 1 H kenarının uzunluğu A 1 noktasının ordinatına eşittir, yani |A 1 H|=y ve OA 1 hipotenüsünün uzunluğu bire eşittir, Çünkü birim çemberin yarıçapıdır. O halde, geometri tanımı gereği, bir A 1 OH dik üçgeninde dar açı α'nın sinüsü, karşı kenarın hipotenüse oranına eşittir, yani sinα=|A 1 H|/|OA 1 |= y/1=y. Ve trigonometrinin tanımı gereği, dönme açısı a'nın sinüsü A1 noktasının ordinatına eşittir, yani sinα=y. Bu, bir dik üçgende bir dar açının sinüsünü belirlemenin, α 0 ila 90 derece arasında olduğunda dönme açısı α'nın sinüsünü belirlemeye eşdeğer olduğunu gösterir.

Benzer şekilde, bir a dar açısının kosinüs, tanjant ve kotanjant tanımlarının, a dönme açısının kosinüs, tanjant ve kotanjant tanımlarıyla tutarlı olduğu gösterilebilir.

Referanslar.

  1. Geometri. 7-9 sınıflar: ders kitabı genel eğitim için kurumlar / [L. S. Atanasyan, V. F. Butuzov, S. B. Kadomtsev, vb.]. - 20. baskı. M.: Eğitim, 2010. - 384 s.: hasta. - ISBN 978-5-09-023915-8.
  2. Pogorelov A.V. Geometri: Ders Kitabı. 7-9 sınıflar için. genel eğitim kurumlar / A.V. Pogorelov. - 2. baskı - M.: Eğitim, 2001. - 224 s.: hasta. - ISBN 5-09-010803-X.
  3. Cebir ve temel fonksiyonlar: öğretici 9. sınıf öğrencileri için lise/ E. S. Kochetkov, E. S. Kochetkova; Düzenleyen: Fiziksel ve Matematik Bilimleri Doktoru O. N. Golovin - 4. baskı. M.: Eğitim, 1969.
  4. Cebir: Ders Kitabı 9. sınıf için. ortalama okul / Yu. N. Makarychev, N. G. Mindyuk, K. I. Neshkov, S. B. Suvorova; Ed. S. A. Telyakovsky. - M .: Eğitim, 1990. - 272 s.: - ISBN 5-09-002727-7.
  5. Cebir ve analizin başlangıcı: Proc. 10-11 sınıflar için. genel eğitim kurumlar / A.N. Kolmogorov, A.M. Abramov, Yu.P. Dudnitsyn ve diğerleri; Ed. A. N. Kolmogorov - 14. baskı - M.: Eğitim, 2004. - 384 s.: - ISBN 5-09-013651-3.
  6. Mordkoviç A.G. Cebir ve analizin başlangıcı. 10. sınıf. Saat 2'de Bölüm 1: öğretici. eğitim kurumları(profil düzeyi)/ A. G. Mordkovich, P. V. Semenov. - 4. baskı, ekleyin. - M.: Mnemosyne, 2007. - 424 s.: hasta. ISBN 978-5-346-00792-0.
  7. Cebir ve matematiksel analizin başlangıcı. 10. sınıf: ders kitabı. genel eğitim için kurumlar: temel ve profil. seviyeler /[Yu. M. Kolyagin, M.V. Tkacheva, N.E. Fedorova, M.I. Shabunin]; tarafından düzenlendi A. B. Zhizhchenko. - 3. baskı. - I.: Eğitim, 2010.- 368 s.: hasta.- ISBN 978-5-09-022771-1.
  8. Bashmakov M. I. Cebir ve analizin başlangıcı: Ders kitabı. 10-11 sınıflar için. ortalama okul - 3. baskı. - M.: Eğitim, 1993. - 351 s.: hasta. - ISBN 5-09-004617-4.
  9. Gusev V.A., Mordkovich A.G. Matematik (teknik okullara girenler için bir el kitabı): Proc. ödenek.- M.; Daha yüksek okul, 1984.-351 s., hasta.

Talimatlar

Kosinüsü bulmanız gerekiyorsa açı rastgele bir üçgende kosinüs teoremini kullanmanız gerekir:
açı dar ise: çünkü? = (a2 + b2 – c2)/(2ab);
eğer açı: çünkü? = (c2 – a2 – b2)/(2ab), burada a, b köşeye bitişik kenarların uzunluklarıdır, c ise köşenin karşısındaki kenarın uzunluğudur.

Faydalı tavsiyeler

Matematiksel gösterim kosinüs – cos.
Kosinüs değeri 1'den büyük ve -1'den küçük olamaz.

Kaynaklar:

  • bir açının kosinüsü nasıl hesaplanır
  • Birim çember üzerinde trigonometrik fonksiyonlar

Kosinüs açının temel bir trigonometrik fonksiyonudur. Kosinüs belirleme yeteneği şu durumlarda faydalı olacaktır: vektör cebiri vektörlerin çeşitli eksenlere izdüşümlerini belirlerken.

Talimatlar

сos?=(b?+c?-a?)/(2*b*c)

A, b, c kenarları sırasıyla 3, 4, 5 mm'ye eşit olan bir üçgen vardır.

Bulmak kosinüs büyük kenarlar arasındaki açı.

a kenarının karşısındaki açıyı ? ile gösterelim, o zaman yukarıda türetilen formüle göre şunu elde ederiz:

сos?=(b?+c?-a?)/(2*b*c)=(4?+5?-3?)/(2*4*5)=(16+25-9)/40 =32/40=0,8

Cevap: 0,8.

Üçgen dik açılı ise, o zaman bulmak için kosinüs ve bir açı için herhangi iki kenarın uzunluğunu bilmek yeterlidir ( kosinüs dik açı 0'dır).

Kenarları a, b, c olan ve c hipotenüs olan bir dik üçgen olsun.

Tüm seçenekleri ele alalım:

(Üçgenin) a ve b kenarlarının uzunlukları biliniyorsa cos?'yu bulun.

Ek olarak Pisagor teoremini kullanalım:

сos?=(b?+c?-а?)/(2*b*c)=(b?+b?+а?-а?)/(2*b*v(b?+а?)) =(2*b?)/(2*b*v(b?+a?))=b/v(b?+a?)

Ortaya çıkan formülün doğru olduğundan emin olmak için örnek 1'deki formülü yerine koyarız;

Bazı temel hesaplamalar yaptıktan sonra şunu elde ederiz:

Benzer şekilde bulundu kosinüs dikdörtgen şeklinde üçgen diğer durumlarda:

a ve c (hipotenüs ve karşı kenar) verildiğinde cos'u bulun?

сos?=(b?+c?-а?)/(2*b*c)=(с?-а?+с?-а?)/(2*с*v(с?-а?)) =(2*с?-2*а?)/(2*с*v(с?-а?))=v(с?-а?)/с.

Örnekteki a=3 ve c=5 değerlerini değiştirerek şunu elde ederiz:

Bilinen b ve c (hipotenüs ve bitişik bacak).

Çünkü buldun mu?

Benzer dönüşümleri yaptıktan sonra (örnek 2 ve 3'te gösterilmiştir), bu durumda şunu elde ederiz: kosinüs V üçgençok basit bir formül kullanılarak hesaplanır:

Türetilmiş formülün basitliği basitçe açıklanabilir: aslında köşeye bitişik mi? bacak hipotenüsün bir izdüşümüdür, uzunluğu hipotenüsün uzunluğunun cos? ile çarpımına eşittir.

İlk örnekteki b=4 ve c=5 değerlerini değiştirerek şunu elde ederiz:

Bu, tüm formüllerimizin doğru olduğu anlamına gelir.

İpucu 5: Dik üçgende dar açı nasıl bulunur?

Doğrudan karboniküçgen muhtemelen tarihsel açıdan en ünlü geometrik figürlerden biridir. Pisagorcu “pantolon” ​​ancak “Eureka!” ile rekabet edebilir. Arşimet.

İhtiyacın olacak

  • - bir üçgenin çizimi;
  • - cetvel;
  • - iletki

Talimatlar

Bir üçgenin açılarının toplamı 180 derecedir. Dikdörtgen şeklinde üçgen bir açı (düz) her zaman 90 derece olacaktır ve geri kalanı dardır, yani. her biri 90 dereceden az. Dikdörtgende hangi açının olduğunu belirlemek için üçgen Düz ise üçgenin kenarlarını ölçmek ve en büyüğünü belirlemek için bir cetvel kullanın. Hipotenüstür (AB) ve dik açının (C) karşısında bulunur. Kalan iki kenar bir dik açı ve bacaklar (AC, BC) oluşturur.

Hangi açının dar açı olduğunu belirledikten sonra açıyı matematiksel formüllerle hesaplamak için açıölçer kullanabilirsiniz.

Bir açıölçer kullanarak açıyı belirlemek için, üst kısmını (bunu A harfiyle gösterelim) iletki ayağının ortasındaki cetvel üzerindeki özel bir işaretle hizalayın AC, üst kenarıyla çakışmalıdır; İletkinin yarım daire şeklindeki kısmında AB hipotenüsünün geçtiği noktayı işaretleyin. Bu noktadaki değer derece cinsinden açıya karşılık gelir. İletki üzerinde belirtilen 2 değer varsa, o zaman dar bir açı için daha küçük olanı, geniş bir açı için - daha büyük olanı seçmeniz gerekir.

Ortaya çıkan değeri Bradis referans kitaplarında bulun ve ortaya çıkan sayısal değerin hangi açıya karşılık geldiğini belirleyin. Büyükannelerimiz bu yöntemi kullanırdı.

Bizimkinde trigonometrik formüllerin hesaplanması işlevini almak yeterlidir. Örneğin, yerleşik Windows hesap makinesi. "Hesap Makinesi" uygulamasını başlatın, "Görünüm" menü öğesinden "Mühendislik" seçeneğini seçin. İstediğiniz açının sinüsünü hesaplayın, örneğin sin (A) = BC/AB = 2/4 = 0,5

Hesap makinesini şuna değiştir: ters fonksiyonlar, hesap makinesi ekranındaki INV düğmesine tıklayarak, ardından arksinüs fonksiyon düğmesine tıklayın (ekranda günahın eksi birinci kuvveti olarak gösterilir). Hesaplama penceresinde şu mesaj görünecektir: asind (0,5) = 30. istenilen açının değeri 30 derecedir.

Kaynaklar:

  • Bradis tabloları (sinüsler, kosinüsler)

Matematikte kosinüs teoremi çoğunlukla bir açının üçüncü tarafını ve iki tarafını bulmanın gerekli olduğu durumlarda kullanılır. Ancak bazen problemin durumu tam tersi şekilde ortaya çıkar: verilen üç kenarla bir açı bulmanız gerekir.

Talimatlar

Size iki kenarının uzunluğu ve bir açısının değeri bilinen bir üçgen verildiğini hayal edin. Bu üçgenin tüm açıları birbirine eşit değildir ve kenarlarının boyutları da farklıdır. γ açısı, bu şekil olan AB ile gösterilen üçgenin kenarının karşısında yer alır. Bu açının yanı sıra AC ve BC'nin geri kalan tarafları boyunca, kosinüs teoremini kullanarak üçgenin bilinmeyen tarafını bulabilir ve bundan aşağıda sunulan formülü elde edebilirsiniz:
a^2=b^2+c^2-2bc*cosγ, burada a=BC, b=AB, c=AC
Kosinüs teoremine genelleştirilmiş Pisagor teoremi denir.

Şimdi şeklin üç tarafının da verildiğini, ancak γ açısının bilinmediğini hayal edin. a^2=b^2+c^2-2bc*cosγ formunu bilerek, bu ifadeyi istenen değer γ: b^2+c^2=2bc*cosγ+a^2 açısı olacak şekilde dönüştürün.
Daha sonra yukarıdaki denklemi biraz farklı bir forma koyun: b^2+c^2-a^2=2bc*cosγ.
Bu ifade daha sonra aşağıdaki ifadeye dönüştürülmelidir: cosγ=√b^2+c^2-a^2/2bc.
Geriye kalan tek şey sayıları formülde yerine koymak ve hesaplamaları yapmaktır.

γ ile gösterilen kosinüsü bulmak için, bunun ark kosinüs adı verilen trigonometrinin tersi cinsinden ifade edilmesi gerekir. M sayısının ark kosinüsü, γ açısının kosinüsünün m'ye eşit olduğu γ açısının değeridir. y=arccos m fonksiyonu azalıyor. Örneğin, γ açısının kosinüsünün yarıma eşit olduğunu düşünün. Bu durumda γ açısı ark kosinüs aracılığıyla aşağıdaki şekilde tanımlanabilir:
γ = arccos, m = arccos 1/2 = 60°, burada m = 1/2.
Benzer şekilde üçgenin diğer iki bilinmeyen kenarıyla birlikte kalan açılarını da bulabilirsiniz.

Sinüs ve kosinüs, "doğrudan" olarak adlandırılan iki trigonometrik fonksiyondur. Diğerlerine göre daha sık hesaplanması gerekenler bunlardır ve bugün bu sorunu çözmek için her birimizin önemli sayıda seçeneği vardır. Aşağıda en çok görülenlerden bazıları yer almaktadır basit yollar.

Talimatlar

Başka bir hesaplama yöntemi yoksa, iletki, kurşun kalem ve bir parça kağıt kullanın. Kosinüs tanımlarından biri dik üçgende dar açılar cinsinden verilmiştir - bu açının karşısındaki bacağın uzunluğu ile uzunluk arasındaki orana eşittir. Açılarından biri dik (90°), diğeri ise hesaplamak istediğiniz açı olan bir üçgen çizin. Kenarların uzunluğu önemli değil - onları sizin için ölçmeniz daha uygun olan şekilde çizin. İstediğiniz kenarın uzunluğunu ve hipotenüsü ölçün ve herhangi birini kullanarak birinciyi ikinciye bölün. uygun bir şekilde.

Yerleşik hesap makinesini kullanarak trigonometrik fonksiyonların değerinden yararlanın arama motoru Nigma, eğer internet erişimin varsa. Örneğin, 20°'lik bir açının kosinüsünü hesaplamanız gerekiyorsa, http://nigma.ru hizmetinin ana sayfasını yükledikten sonra alana girin. arama sorgusu“kosinüs 20” ve “Bul!” düğmesine tıklayın. "Derece"yi atlayabilir ve "kosinüs" kelimesini cos ile değiştirebilirsiniz - her durumda, arama motoru sonucu 15 ondalık basamağa kadar doğru gösterecektir (0,939692620785908).

Yüklenen standart programı açın işletim sistemiİnternet erişimi yoksa Windows. Bunu örneğin win ve r tuşlarına aynı anda basarak, ardından calc komutunu girip Tamam düğmesine tıklayarak yapabilirsiniz. Trigonometrik fonksiyonları hesaplamak için burada "mühendislik" veya "bilimsel" (işletim sistemi sürümüne bağlı olarak) adı verilen bir arayüz bulunmaktadır - hesap makinesi menüsünün "Görünüm" bölümünde istediğiniz öğeyi seçin. Bundan sonra açı değerini girin ve program arayüzünde cos butonuna tıklayın.

Konuyla ilgili video

İpucu 8: Dik Üçgende Açılar Nasıl Belirlenir

Dikdörtgen, köşeler ve kenarlar arasındaki belirli ilişkilerle karakterize edilir. Bazılarının değerlerini bilerek bazılarını hesaplayabilirsiniz. Bu amaçla geometri aksiyomlarına ve teoremlerine dayanan formüller kullanılır.

Sinüs, kosinüs, tanjant ve kotanjant kavramları, matematiğin bir dalı olan trigonometrinin ana kategorileridir ve açının tanımıyla ayrılmaz bir şekilde bağlantılıdır. Bu matematik bilimine hakim olmak, formüllerin ve teoremlerin ezberlenmesini ve anlaşılmasının yanı sıra gelişmiş mekansal düşünmeyi gerektirir. Bu nedenle trigonometrik hesaplamalar genellikle okul çocukları ve öğrenciler için zorluklara neden olur. Bunların üstesinden gelmek için trigonometrik fonksiyonlara ve formüllere daha aşina olmalısınız.

Trigonometride kavramlar

Trigonometrinin temel kavramlarını anlamak için öncelikle dik üçgenin ve daire içindeki açının ne olduğunu ve neden tüm temel trigonometrik hesaplamaların bunlarla ilişkili olduğunu anlamalısınız. Açılarından birinin ölçüsü 90 derece olan üçgen dikdörtgendir. Tarihsel olarak bu figür insanlar tarafından mimari, navigasyon, sanat ve astronomi alanlarında sıklıkla kullanılmıştır. Buna göre, insanlar bu şeklin özelliklerini inceleyerek ve analiz ederek, parametrelerinin karşılık gelen oranlarını hesaplamaya geldiler.

Dik üçgenlerle ilişkili ana kategoriler hipotenüs ve bacaklardır. Hipotenüs, bir üçgenin dik açının karşısındaki tarafıdır. Bacaklar sırasıyla diğer iki taraftır. Herhangi bir üçgenin açılarının toplamı her zaman 180 derecedir.

Küresel trigonometri, trigonometrinin okulda incelenmeyen bir bölümüdür, ancak astronomi ve jeodezi gibi uygulamalı bilimlerde bilim adamları bunu kullanır. Küresel trigonometride bir üçgenin özelliği, açılarının toplamının her zaman 180 dereceden büyük olmasıdır.

Bir üçgenin açıları

Bir dik üçgende bir açının sinüsü, istenilen açının karşısındaki kenarın üçgenin hipotenüsüne oranıdır. Buna göre kosinüs, bitişik kenar ile hipotenüsün oranıdır. Hipotenüs her zaman bacaktan daha uzun olduğundan, bu değerlerin her ikisinin de büyüklüğü her zaman birden küçüktür.

Bir açının tanjantı, istenen açının karşı tarafının bitişik tarafına veya sinüsün kosinüse oranına eşit bir değerdir. Kotanjant ise istenen açının bitişik tarafının karşı tarafa oranıdır. Bir açının kotanjantı, bir açının tanjant değerine bölünmesiyle de elde edilebilir.

Birim çember

Geometride birim çember, yarıçapı bire eşit olan bir çemberdir. Böyle bir daire, dairenin merkezi başlangıç ​​noktasıyla çakışacak şekilde Kartezyen koordinat sisteminde inşa edilir ve başlangıç ​​pozisyonu Yarıçap vektörü, X ekseninin (apsis ekseni) pozitif yönü ile belirlenir. Çember üzerindeki her noktanın iki koordinatı vardır: XX ve YY, yani apsis ve ordinat koordinatları. XX düzlemindeki daire üzerinde herhangi bir noktayı seçip apsis eksenine dik bir noktayı bırakarak, yarıçapın seçilen noktaya (C harfiyle gösterilir) oluşturduğu, X eksenine çizilen dik bir üçgen elde ederiz. (kesişme noktası G harfiyle gösterilir) ve apsis ekseninin segmenti koordinatların başlangıcı (nokta A harfiyle gösterilir) ile kesişme noktası G arasındadır. Ortaya çıkan ACG üçgeni, içinde yazılı bir dik üçgendir. AG'nin hipotenüs, AC ve GC'nin ise kenarlar olduğu bir daire. AC dairesinin yarıçapı ile apsis ekseninin AG işaretli bölümü arasındaki açı α (alfa) olarak tanımlanır. Yani, çünkü α = AG/AC. AC'nin birim çemberin yarıçapı olduğu ve bire eşit olduğu dikkate alındığında cos α=AG olduğu ortaya çıkar. Benzer şekilde sin α=CG.

Ek olarak, bu verileri bilerek, çember üzerindeki C noktasının koordinatını belirleyebilirsiniz, çünkü cos α=AG ve sin α=CG, yani C noktası verilen koordinatlara sahiptir (cos α;sin α). Teğetin sinüsün kosinüs oranına eşit olduğunu bilerek tan α = y/x ve cot α = x/y olduğunu belirleyebiliriz. Açıları negatif koordinat sisteminde dikkate alarak bazı açıların sinüs ve kosinüs değerlerinin negatif olabileceğini hesaplayabilirsiniz.

Hesaplamalar ve temel formüller


Trigonometrik fonksiyon değerleri

Trigonometrik fonksiyonların özünü birim çember üzerinden ele alarak, bu fonksiyonların değerlerini bazı açılar için türetebiliriz. Değerler aşağıdaki tabloda listelenmiştir.

En basit trigonometrik kimlikler

Trigonometrik fonksiyonun işareti altında bilinmeyen bir değer bulunan denklemlere trigonometrik denir. sin x = α, k - herhangi bir tam sayı değerine sahip kimlikler:

  1. günah x = 0, x = πk.
  2. 2. sin x = 1, x = π/2 + 2πk.
  3. günah x = -1, x = -π/2 + 2πk.
  4. günah x = a, |a| > 1, çözüm yok.
  5. günah x = a, |a| ≦ 1, x = (-1)^k * arcsin α + πk.

k'nin herhangi bir tam sayı olduğu cos x = a değerine sahip kimlikler:

  1. çünkü x = 0, x = π/2 + πk.
  2. çünkü x = 1, x = 2πk.
  3. çünkü x = -1, x = π + 2πk.
  4. çünkü x = a, |a| > 1, çözüm yok.
  5. çünkü x = a, |a| ≦ 1, x = ±arccos α + 2πk.

k'nin herhangi bir tam sayı olduğu tg x = a değerine sahip kimlikler:

  1. tan x = 0, x = π/2 + πk.
  2. tan x = a, x = arktan α + πk.

ctg x = a değerine sahip kimlikler; burada k herhangi bir tamsayıdır:

  1. bebek karyolası x = 0, x = π/2 + πk.
  2. ctg x = a, x = arcctg α + πk.

Azaltma formülleri

Bu sabit formül kategorisi, formun trigonometrik işlevlerinden bir argümanın işlevlerine geçebileceğiniz, yani herhangi bir değerin açısının sinüs, kosinüs, tanjant ve kotanjantını açının karşılık gelen göstergelerine indirgeyebileceğiniz yöntemleri belirtir. Daha fazla hesaplama kolaylığı için 0 ile 90 derece arasındaki aralık.

Bir açının sinüsüne göre fonksiyonların azaltılmasına yönelik formüller şuna benzer:

  • sin(900 - α) = α;
  • sin(900 + α) = cos α;
  • sin(1800 - α) = sin α;
  • sin(1800 + α) = -sin α;
  • sin(2700 - α) = -cos α;
  • sin(2700 + α) = -cos α;
  • sin(3600 - α) = -sin α;
  • sin(3600 + α) = sin α.

Açının kosinüsü için:

  • cos(900 - α) = sin α;
  • cos(900 + α) = -sin α;
  • cos(1800 - α) = -cos α;
  • cos(1800 + α) = -cos α;
  • cos(2700 - α) = -sin α;
  • cos(2700 + α) = sin α;
  • cos(3600 - α) = cos α;
  • cos(3600 + α) = cos α.

Yukarıdaki formüllerin kullanımı iki kurala bağlı olarak mümkündür. Birincisi, eğer açı bir değer (π/2 ± a) veya (3π/2 ± a) olarak temsil edilebiliyorsa, fonksiyonun değeri değişir:

  • günahtan cos'a;
  • çünkü günahtan günaha;
  • tg'den ctg'ye;
  • ctg'den tg'ye.

Açı (π ± a) veya (2π ± a) olarak temsil edilebiliyorsa fonksiyonun değeri değişmeden kalır.

İkinci olarak, indirgenmiş fonksiyonun işareti değişmez: başlangıçta pozitifse, öyle kalır. Negatif fonksiyonlarla aynı şey.

Toplama formülleri

Bu formüller trigonometrik fonksiyonları aracılığıyla iki dönme açısının toplamı ve farkının sinüs, kosinüs, tanjant ve kotanjant değerlerini ifade eder. Tipik olarak açılar α ve β olarak gösterilir.

Formüller şöyle görünür:

  1. sin(α ± β) = sin α * cos β ± cos α * günah.
  2. cos(α ± β) = cos α * cos β ∓ sin α * günah.
  3. tan(α ± β) = (tg α ± tan β) / (1 ∓ tan α * tan β).
  4. ctg(α ± β) = (-1 ± ctg α * ctg β) / (ctg α ± ctg β).

Bu formüller herhangi bir α ve β açısı için geçerlidir.

Çift ve üçlü açı formülleri

Çift ve üçlü açı trigonometrik formülleri sırasıyla 2a ve 3a açılarının fonksiyonlarını a açısının trigonometrik fonksiyonlarıyla ilişkilendiren formüllerdir. Toplama formüllerinden türetilmiştir:

  1. sin2α = 2sinα*cosα.
  2. cos2α = 1 - 2sin^2 α.
  3. tan2α = 2tgα / (1 - tan^2 α).
  4. sin3α = 3sinα - 4sin^3α.
  5. cos3α = 4cos^3 α - 3cosα.
  6. tg3α = (3tgα - tg^3 α) / (1-tg^2 α).

Toplamdan ürüne geçiş

2sinx*cosy = sin(x+y) + sin(x-y) olduğunu düşünürsek, bu formülü basitleştirerek sinα + sinβ = 2sin(α + β)/2 * cos(α − β)/2 özdeşliğini elde ederiz. Benzer şekilde sinα - sinβ = 2sin(α - β)/2 * cos(α + β)/2; cosα + cosβ = 2cos(α + β)/2 * cos(α − β)/2; cosα — cosβ = 2sin(α + β)/2 * sin(α − β)/2; tanα + tanβ = sin(α + β) / cosα * cosβ; tgα - tgβ = sin(α - β) / cosα * cosβ; cosα + sinα = √2sin(π/4 ∓ α) = √2cos(π/4 ± α).

Üründen toplama geçiş

Bu formüller, bir toplamın bir ürüne geçişinin kimliklerinden kaynaklanır:

  • sinα * sinβ = 1/2*;
  • cosα * cosβ = 1/2*;
  • sinα * cosβ = 1/2*.

Derece azaltma formülleri

Bu özdeşliklerde sinüs ve kosinüsün kare ve kübik kuvvetleri, bir çoklu açının birinci kuvvetinin sinüsü ve kosinüsü cinsinden ifade edilebilir:

  • sin^2 α = (1 - cos2α)/2;
  • cos^2 a = (1 + cos2α)/2;
  • sin^3 α = (3 * sinα - sin3α)/4;
  • cos^3 α = (3 * cosα + cos3α)/4;
  • sin^4 α = (3 - 4cos2α + cos4α)/8;
  • cos^4 α = (3 + 4cos2α + cos4α)/8.

Evrensel ikame

Evrensel trigonometrik ikame formülleri, trigonometrik fonksiyonları yarım açının tanjantı cinsinden ifade eder.

  • sin x = (2tgx/2) * (1 + tan^2 x/2), x = π + 2πn ile;
  • çünkü x = (1 - tan^2 x/2) / (1 + tan^2 x/2), burada x = π + 2πn;
  • tg x = (2tgx/2) / (1 - tg^2 x/2), burada x = π + 2πn;
  • karyola x = (1 - tg^2 x/2) / (2tgx/2), x = π + 2πn ile.

Özel durumlar

En basit trigonometrik denklemlerin özel durumları aşağıda verilmiştir (k herhangi bir tamsayıdır).

Sinüs için bölümler:

Günah x değeri x değeri
0 tk
1 π/2 + 2πk
-1 -π/2 + 2πk
1/2 π/6 + 2πk veya 5π/6 + 2πk
-1/2 -π/6 + 2πk veya -5π/6 + 2πk
√2/2 π/4 + 2πk veya 3π/4 + 2πk
-√2/2 -π/4 + 2πk veya -3π/4 + 2πk
√3/2 π/3 + 2πk veya 2π/3 + 2πk
-√3/2 -π/3 + 2πk veya -2π/3 + 2πk

Kosinüs için bölümler:

çünkü x değeri x değeri
0 π/2 + 2πk
1 2πk
-1 2 + 2πk
1/2 ±π/3 + 2πk
-1/2 ±2π/3 + 2πk
√2/2 ±π/4 + 2πk
-√2/2 ±3π/4 + 2πk
√3/2 ±π/6 + 2πk
-√3/2 ±5π/6 + 2πk

Teğet için bölümler:

tg x değeri x değeri
0 tk
1 π/4 + πk
-1 -π/4 + πk
√3/3 π/6 + πk
-√3/3 -π/6 + πk
√3 π/3 + πk
-√3 -π/3 + πk

Kotanjant için bölümler:

ctg x değeri x değeri
0 π/2 + πk
1 π/4 + πk
-1 -π/4 + πk
√3 π/6 + πk
-√3 -π/3 + πk
√3/3 π/3 + πk
-√3/3 -π/3 + πk

Teoremler

Sinüs teoremi

Teoremin iki versiyonu vardır: basit ve genişletilmiş. Basit sinüs teoremi: a/sin α = b/sin β = c/sin γ. Bu durumda sırasıyla a, b, c üçgenin kenarları, α, β, γ ise karşıt açılardır.

Rastgele bir üçgen için genişletilmiş sinüs teoremi: a/sin α = b/sin β = c/sin γ = 2R. Bu özdeşlikte R, verilen üçgenin içine yazıldığı dairenin yarıçapını belirtir.

Kosinüs teoremi

Kimlik şu şekilde görüntülenir: a^2 = b^2 + c^2 - 2*b*c*cos α. Formülde a, b, c üçgenin kenarları, α ise a kenarının karşısındaki açıdır.

Teğet teoremi

Formül, iki açının teğetleri ile karşı tarafların uzunlukları arasındaki ilişkiyi ifade eder. Kenarlar a, b, c olarak etiketlenmiştir ve karşılık gelen karşıt açılar α, β, γ'dır. Teğet teoreminin formülü: (a - b) / (a+b) = tan((α - β)/2) / tan((α + β)/2).

Kotanjant teoremi

Bir üçgenin içine yazılan bir dairenin yarıçapını kenarlarının uzunluğuna bağlar. Eğer a, b, c üçgenin kenarları ve sırasıyla A, B, C bunların karşısındaki açılar ise, r yazılı dairenin yarıçapı ve p üçgenin yarı çevresi ise, aşağıdaki kimlikler geçerlidir:

  • bebek karyolası A/2 = (p-a)/r;
  • bebek karyolası B/2 = (p-b)/r;
  • bebek karyolası C/2 = (p-c)/r.

Başvuru

Trigonometri sadece teorik bir bilim değildir. matematiksel formüller. Özellikleri, teoremleri ve kuralları pratikte insan faaliyetinin çeşitli dalları (astronomi, hava ve havacılık) tarafından kullanılmaktadır. deniz navigasyonu, müzik teorisi, jeodezi, kimya, akustik, optik, elektronik, mimari, ekonomi, makine mühendisliği, ölçüm çalışmaları, bilgisayar grafikleri, haritacılık, oşinografi ve diğerleri.

Sinüs, kosinüs, teğet ve kotanjant trigonometrinin temel kavramlarıdır; bunların yardımıyla bir üçgenin kenarlarının açıları ve uzunlukları arasındaki ilişkiler matematiksel olarak ifade edilebilir ve gerekli miktarlar kimlikler, teoremler ve kurallar aracılığıyla bulunabilir.



İlgili yayınlar