Что такое клеточная мембрана в биологии. Клеточная мембрана

Все живые организмы в зависимости от строения клетки делят на три группы (см. Рис. 1):

1. Прокариоты (безъядерные)

2. Эукариоты (ядерные)

3. Вирусы (неклеточные)

Рис. 1. Живые организмы

На этом уроке мы начнем изучать строение клеток эукариотических организмов, к которым относятся растения, грибы и животные. Их клетки наиболее крупные и более сложно устроены по сравнению с клетками прокариот.

Как известно, клетки способны к самостоятельной деятельности. Они могут обмениваться веществом и энергией с окружающей средой, а также расти и размножаться, поэтому внутреннее строение клетки очень сложное и в первую очередь зависит от той функции, которую клетка выполняет в многоклеточном организме.

Принципы построения всех клеток одинаковые. В каждой эукариотической клетке можно выделить следующие основные части (см. Рис. 2):

1. Наружная мембрана, которая отделяет содержимое клетки от внешней среды.

2. Цитоплазма с органеллами.

Рис. 2. Основные части эукариотической клетки

Термин «мембрана» был предложен около ста лет назад для обозначения границ клетки, но с развитием электронной микроскопии стало ясно, что клеточная мембрана входит в состав структурных элементов клетки.

В 1959 году Дж. Д. Робертсон сформулировал гипотезу о строении элементарной мембраны, согласно которой клеточные мембраны животных и растений построены по одному и тому же типу.

В 1972 году Сингером и Николсоном была предложена , которая в настоящее время является общепризнанной. Согласно этой модели основой любой мембраны является двойной слой фосфолипидов.

У фосфолипидов (соединений, содержащих фосфатную группу) молекулы состоят из полярной головки и двух неполярных хвостов (см. Рис. 3).

Рис. 3. Фосфолипид

В фосфолипидном бислое гидрофобные остатки жирных кислот обращены внутрь, а гидрофильные головки, включающие остаток фосфорной кислоты, - наружу (см. Рис. 4).

Рис. 4. Фосфолипидный бислой

Фосфолипидный бислой представлен как динамическая структура, липиды могут перемещаться, меняя свое положение.

Двойной слой липидов обеспечивает барьерную функцию мембраны, не давая содержимому клетки растекаться, и препятствует попаданию в клетку токсических веществ.

О наличии пограничной мембраны между клеткой и окружающей средой было известно задолго до появления электронного микроскопа. Физико-химики отрицали существование плазматической мембраны и считали, что есть граница раздела между живым коллоидным содержимым и окружающей средой, но Пфеффер (немецкий ботаник и физиолог растений) в 1890 году подтвердил ее существование.

В начале прошлого века Овертон (британский физиолог и биолог) обнаружил, что скорость проникновения многих веществ в эритроциты прямо пропорциональна их растворимости в липидах. В связи с этим ученый предположил, что мембрана содержит большое количество липидов и вещества, растворяясь в ней, проходят через нее и оказываются по ту сторону мембраны.

В 1925 году Гортер и Грендель (американские биологи) выделили липиды из клеточной мембраны эритроцитов. Полученные липиды они распределили по поверхности воды толщиной в одну молекулу. Оказалось, что площадь поверхности, занятой слоем липидов, в два раза больше площади самого эритроцита. Поэтому эти ученые сделали вывод, что клеточная мембрана состоит не из одного, а из двух слоев липидов.

Даусон и Даниэлли (английские биологи) в 1935 году высказали предположение, что в клеточных мембранах липидный бимолекулярный слой заключен между двумя слоями белковых молекул (см. Рис. 5).

Рис. 5. Модель мембраны, предложенная Даусоном и Даниэлли

С появлением электронного микроскопа открылась возможность познакомиться со строением мембраны, и тогда обнаружилось, что мембраны животных и растительных клеток выглядят как трехслойная структура (см. Рис. 6).

Рис. 6. Мембрана клетки под микроскопом

В 1959 году биолог Дж. Д. Робертсон, объединив имевшиеся в то время данные, выдвинул гипотезу о строении «элементарной мембраны», в которой он постулировал структуру, общую для всех биологических мембран.

Постулаты Робертсона о строении «элементарной мембраны»

1. Все мембраны имеют толщину около 7,5 нм.

2. В электронном микроскопе все они представляются трехслойными.

3. Трехслойный вид мембраны есть результат именно того расположения белков и полярных липидов, которое предусматривала модель Даусона и Даниэлли - центральный липидный бислой заключен между двумя слоями белка.

Эта гипотеза о строении «элементарной мембраны» претерпела различные изменения, и в 1972 году была выдвинута жидкостно-мозаичная модель мембраны (см. Рис. 7), которая сейчас является общепризнанной.

Рис. 7. Жидкостно-мозаичная модель мембраны

В липидный бислой мембраны погружены молекулы белков, они образуют подвижную мозаику. По расположению в мембране и способу взаимодействия с липидным бислоем белки можно разделить на:

- поверхностные (или периферические) мембранные белки, связанные с гидрофильной поверхностью липидного бислоя;

- интегральные (мембранные) белки, погруженные в гидрофобную область бислоя.

Интегральные белки различаются по степени погруженности их в гидрофобную область бислоя. Они могут быть полностью погружены (интегральные ) или частично погружены (полуинтегральные ), а также могут пронизывать мембрану насквозь (трансмембранные ).

Мембранные белки по своим функциям можно разделить на две группы:

- структурные белки. Они входят в состав клеточных мембран и участвуют в поддержании их структуры.

- динамические белки. Они находятся на мембранах и участвуют в происходящих на ней процессах.

Выделяют три класса динамических белков.

1. Рецепторные . С помощью этих белков клетка воспринимает различные воздействия на свою поверхность. То есть они специфически связывают такие соединения, как гормоны, нейромедиаторы, токсины на наружной стороне мембраны, что служит сигналом для изменения различных процессов внутри клетки или самой мембраны.

2. Транспортные . Эти белки транспортируют через мембрану те или иные вещества, также они образовывают каналы, через которые осуществляется транспорт различных ионов в клетку и из нее.

3. Ферментативные . Это белки-ферменты, которые находятся в мембране и участвуют в различных химических процессах.

Транспорт веществ через мембрану

Липидные бислои в значительной степени непроницаемы для многих веществ, поэтому требуется большое количество энергетических затрат для переноса веществ через мембрану, а также требуется возникновение различных структур.

Различают два типа транспорта: пассивный и активный.

Пассивный транспорт

Пассивный транспорт - это перенос молекул по градиенту концентрации. То есть он определяется только разностью концентрации переносимого вещества на противоположных сторонах мембраны и осуществляется без затрат энергии.

Существует два вида пассивного транспорта:

- простая диффузия (см. Рис. 8), которая происходит без участия мембранного белка. Механизмом простой диффузии осуществляется трансмембранный перенос газов (кислорода и углекислого газа), воды и некоторых простых органических ионов. Простая диффузия отличается низкой скоростью.

Рис. 8. Простая диффузия

- облегченная диффузия (см. Рис. 9) отличается от простой тем, что проходит с участием белков-переносчиков. Этот процесс специфичен и протекает с более высокой скоростью, чем простая диффузия.

Рис. 9. Облегченная диффузия

Известны два типа мембранных транспортных белков: белки-переносчики (транслоказы) и белки каналообразующие. Транспортные белки связывают специфические вещества и переносят их через мембрану по градиенту их концентрации, и, следовательно, для осуществления этого процесса, как и при простой диффузии, не требуется затраты энергии АТФ.

Пищевые частицы не могут пройти через мембрану, они проникают в клетку путем эндоцитоза (см. Рис. 10). При эндоцитозе плазматическая мембрана образует впячивания и выросты, захватывает твердую частицу пищи. Вокруг пищевого комочка формируется вакуоль (или пузырек), которая далее отшнуровывается от плазматической мембраны, и твердая частичка в вакуоли оказывается внутри клетки.

Рис. 10. Эндоцитоз

Различают два типа эндоцитоза.

1. Фагоцитоз - поглощение твердых частиц. Специализированные клетки, осуществляющие фагоцитоз, называются фагоцитами .

2. Пиноцитоз - поглощение жидкого материала (раствор, коллоидный раствор, суспензии).

Экзоцитоз (см. Рис. 11) - процесс, обратный эндоцитозу. Вещества, синтезированные в клетке, например гормоны, упаковываются в мембранные пузырьки, которые подходят к клеточной мембране, встраиваются в нее, и содержимое пузырька выбрасывается из клетки. Таким же образом клетка может избавляться от ненужных ей продуктов обмена.

Рис. 11. Экзоцитоз

Активный транспорт

В отличие от облегченной диффузии, активный транспорт - это перемещение веществ против градиента концентрации. При этом вещества переходят из области с меньшей их концентрацией в область с большей концентрацией. Поскольку такое перемещение происходит в направлении, противоположном нормальной диффузии, клетка должна при этом затрачивать энергию.

Среди примеров активного транспорта лучше всего изучен так называемый натрий-калиевый насос. Этот насос откачивает ионы натрия из клетки и накачивает в клетку ионы калия, используя при этом энергию АТФ.

1. Структурная (клеточная мембрана отделяет клетку от окружающей среды).

2. Транспортная (через клеточную мембрану осуществляется транспорт веществ, причем клеточная мембрана является высокоизбирательным фильтром).

3. Рецепторная (находящиеся на поверхности мембраны рецепторы воспринимают внешние воздействия, передают эту информацию внутрь клетки, позволяя ей быстро реагировать на изменения окружающей среды).

Помимо перечисленных выше мембрана выполняет также метаболическую и энергопреобразующую функцию.

Метаболическая функция

Биологические мембраны прямо или косвенно участвуют в процессах метаболических превращений веществ в клетке, поскольку большинство ферментов связаны с мембранами.

Липидное окружение ферментов в мембране создает определенные условия для их функционирования, накладывает ограничения на активность мембранных белков и таким образом оказывает регуляторное действие на процессы метаболизма.

Энергопреобразующая функция

Важнейшей функцией многих биомембран служит превращение одной формы энергии в другую.

К энергопреобразующим мембранам относятся внутренние мембраны митохондрий, тилакоиды хлоропластов (см. Рис. 12).

Рис. 12. Митохондрия и хлоропласт

Список литературы

  1. Каменский А.А., Криксунов Е.А., Пасечник В.В. Общая биология 10-11 класс Дрофа, 2005.
  2. Биология. 10 класс. Общая биология. Базовый уровень / П.В. Ижевский, О.А. Корнилова, Т.Е. Лощилина и др. - 2-е изд., переработанное. - Вентана-Граф, 2010. - 224 стр.
  3. Беляев Д.К. Биология 10-11 класс. Общая биология. Базовый уровень. - 11-е изд., стереотип. - М.: Просвещение, 2012. - 304 с.
  4. Агафонова И.Б., Захарова Е.Т., Сивоглазов В.И. Биология 10-11 класс. Общая биология. Базовый уровень. - 6-е изд., доп. - Дрофа, 2010. - 384 с.
  1. Ayzdorov.ru ().
  2. Youtube.com ().
  3. Doctor-v.ru ().
  4. Animals-world.ru ().

Домашнее задание

  1. Какое строение имеет мембрана клетки?
  2. Благодаря каким свойствам липиды способны образовывать мембраны?
  3. Благодаря каким функциям белки способны участвовать в транспорте веществ через мембрану?
  4. Перечислите функции плазматической мембраны.
  5. Как происходит пассивный транспорт через мембрану?
  6. Как происходит активный транспорт через мембрану?
  7. Какова функция натрий-калиевого насоса?
  8. Что такое фагоцитоз, пиноцитоз?
Клеточная мембрана.

Клеточная мембрана отделяет содержимое любой клетки от внешней среды, обеспечивая ее целостность; регулирует обмен между клеткой и средой; внутриклеточные мембраны разделяют клетку на специализированные замкнутые отсеки - компартменты или органеллы, в которых поддерживаются определенные условия среды.

Строение.

Клеточная мембрана представляет собой двойной слой (бислой) молекул класса липидов (жиров), большинство из которых представляет собой так называемые сложные липиды - фосфолипиды. Молекулы липидов имеют гидрофильную («головка») и гидрофобную («хвост») часть. При образовании мембран гидрофобные участки молекул оказываются обращены внутрь, а гидрофильные - наружу. Мембраны - структуры весьма сходные у разных организмов. Толщина мембраны составляет 7-8 нм. (10−9 метра)

Гидрофильность – способность вещества смачиваться водой.
Гидрофобность – неспособность вещества смачиваться водой.

Биологическая мембрана включает и различные белки:
- интегральные (пронизывающие мембрану насквозь)
- полуинтегральные (погруженные одним концом во внешний или внутренний липидный слой)
- поверхностные (расположенные на внешней или прилегающие к внутренней сторонам мембраны).
Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки, и клеточной стенкой (если она есть) снаружи.

Цитоскелет – клеточный каркас внутри клетки.

Функции.

1) Барьерная - обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой.

2) Транспортная - через мембрану происходит транспорт веществ в клетку и из клетки.матричная - обеспечивает определенное взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие.

3) Механическая - обеспечивает автономность клетки, ее внутриклеточных структур, также соединение с другими клетками (в тканях).Большую роль в обеспечение механической функции имеет межклеточное вещество.

4) Рецепторная - некоторые белки, находящиеся в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы).

Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.

Гормоны - биологически активные сигнальные химические вещества.

5) Ферментативная - мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.

6) Осуществление генерации и проведения биопотенциалов.
С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.

Нервный импульс волна возбуждения, передающаяся по нервному волокну.

7) Маркировка клетки - на мембране есть антигены, действующие как маркеры - «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединенными к ним разветвленными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.

Особенности проницаемости.

Клеточные мембраны обладают избирательной проницаемостью: через них медленно проникают разными способами:

  • Глюкоза – основной источник энергии.
  • Аминокислоты - строительные элементы, из которых состоят все белки организма.
  • Жирные кислоты – структурная, энергетическая и др. функции.
  • Глицерол – аставляет организм удерживать воду и уменьшает выработку мочи.
  • Ионы – ферменты для реакций.
Причем сами мембраны в известной мере активно регулируют этот процесс - одни вещества пропускают, а другие нет. Существует четыре основных механизма для поступления веществ в клетку или вывода их из клетки наружу:

Пассивные механизмы проницаемости:

1) Диффузия.

Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.

Диффузия- процесс взаимного проникновения молекул одного вещества между молекулами другого.

Осмос процесс односторонней диффузии через полупроницаемую мембрану молекул растворителя в сторону бо́льшей концентрации растворённого вещества.

Мембрана, окружающая нормальную клетку крови, проницаема лишь для молекул воды, кислорода, некоторых из растворенных в крови питательных веществ и продуктов клеточной жизнедеятельности

Активные механизмы проницаемости:

1) Активный транспорт.

Активный транспорт перенос вещества из области низкой концентрации в область высокой.

Активный транспорт требует затрат энергии, так как происходит из области низкой концентрации в область высокую. На мембране существуют специальные белки-насосы, которые активно вкачивают в клетку ионы калия (K+) и выкачивают из неё ионы натрия (Na+), в качестве энергии служат АТФ.

АТФ универсальный источник энергии для всех биохимических процессов. .(подробнее позже)

2) Эндоцитоз.

Частицы, по какой-либо причине не способные пересечь клеточную мембрану, но необходимые для клетки, могут проникнуть сквозь мембрану путем эндоцитоза.

Эндоцитоз процесс захвата внешнего материала клеткой.

Избирательная проницаемость мембраны при пассивном транспорте обусловлена специальными каналами - интегральными белками. Они пронизывают мембрану насквозь, образовывая своего рода проход. Для элементов K, Na и Cl есть свои каналы. Относительно градиента концентрации молекулы этих элементов движутся в клетку и из неё. При раздражении каналы натриевых ионов раскрываются, и происходит резкое поступление в клетку ионов натрия. При этом происходит дисбаланс мембранного потенциала. После чего мембранный потенциал восстанавливается. Каналы калия всегда открыты, через них в клетку медленно попадают ионы калия.

Строение мембраны

Проницаемость

Активный транспорт

Осмос

Эндоцитоз

Наружная клеточная мембрана (плазмалемма, цитолемма, плазматическая мембрана) животных клеток покрыта снаружи (т.е. на стороне, не контактирующей с цитоплазмой) слоем олигосахаридных цепей, ковалентно присоединенных к мембранным белкам (гликопротеины) и в меньшей степени к липидам (гликолипиды). Это углеводное покрытие мембраны называется гликокаликсом. Назначение гликокаликса пока не очень ясно; есть предположение, что эта структура принимает участие в процессах межклеточного узнавания.

У растительных клеток поверх наружной клеточной мембраны располагается плотный целлюлозный слой с порами, через которые осуществляется связь между соседними клетками посредством цитоплазматических мостиков.

У клеток грибов поверх плазмалеммы – плотный слой хитина .

У бактерий муреина .

Свойства биологических мембран

1. Способность к самосборке после разрушающих воздействий. Это свойство определяется физико-химическими особенностями фосфолипидных молекул, которые в водном растворе собираются вместе так, что гидрофильные концы молекул разворачиваются наружу, а гидрофобные - внутрь. В уже готовые фосфолипидные слои могут встраиваться белки. Способность к самосборке имеет важное значение на клеточном уровне.

2. Полупроницаемость (избирательность в пропускании ионов и молекул). Обеспечивает поддержание постоянства ионного и молекулярного состава в клетке.

3. Текучесть мембран . Мембраны не являются жесткими структурами, они постоянно флюктуируют за счет вращательных и колебательных движений молекул липидов и белков. Это обеспечивает большую скорость протекания ферментативных и других химических процессов в мембранах.

4. Фрагменты мембран не имеют свободных концов , так как замыкаются в пузырьки.

Функции наружной клеточной мембраны (плазмалеммы)

Основными функциями плазмалеммы являются следующие: 1) барьерная, 2) рецепторная, 3) обменная, 4)транспортная.

1. Барьерная функция. Она выражается в том, что плазмалемма ограничи­вает содержимое клетки, отделяя его от внешней среды, а внутриклеточные мембраны раз­деляют цитоплазму на отдельные реакционные отсеки-компартменты .

2. Рецепторная функция. Одной из важнейших функций плазмалеммы является обеспечение коммуникации (связи) клетки с внешней средой посредством присутствующего в мембранах рецепторного аппарата, имеющего белковую или гликопротеиновую природу. Основная функция рецепторных образований плазмалеммы - распознавание внешних сигналов, благодаря которым клетки правильно ориентируются и образуют ткани в процессе дифференцировки. С рецепторной функцией связана деятельность различных регуляторных систем, а также формирование иммунного ответа.

    Обменная функция определяется содержанием в биологических мембранах ферментных белков, являющихся биологическими катализаторами. Их активность меняется в зависимости от рН среды, температуры, давления, от концентрации как субстрата, так и самого фермента. Ферменты определяют интенсивность ключевых реакций метаболизма, а также их направленность.

    Транспортная функция мембран. Мембрана обеспечивает избирательное проникновение в клетку и из клетки в окружающую среду различных химических веществ. Транспорт веществ необходим для поддержания в клетке соответствующего рН, надлежащей ионной концентрации, что обеспечивает эффективность работы клеточных ферментов. Транспорт поставляет питательные вещества, которые служат источником энергии, а также материалом для образования различных клеточных компонентов. От него зависит выведение из клетки токсических отходов, секреция различных полезных веществ и создание ионных градиентов, необходимых для нервной и мышечной активности, Изменение скорости переноса веществ может приводить к нарушениям биоэнергетических процессов, водно-солевого обмена, возбудимости и других процессов. Коррекция этих изменений лежит в основе действия многих лекарственных препаратов.

Существует два основных способа поступления веществ в клетку и вывода из клетки во внешнюю среду;

    пассивный транспорт,

    активный транспорт.

Пассивный транспорт идет по градиенту химической или электрохимической концентрации без затрат энергии АТФ. Если молекула транспортируемого вещества не имеет заряда, то направление пассивного транспорта определяется только разностью концентрации этого вещества по обеим сторонам мембраны (градиент химической концентрации). Если же молекула заряжена, то на ее транспорт влияют как градиент химической концентрации, так и электрический градиент (мембранный потенциал).

Оба градиента вместе составляют электрохимический градиент. Пассивный транспорт веществ может осуществляться двумя способами простой диффузией и облегченной диффузией.

При простой диффузии ионы солей и вода, могут проникать через селективные каналы. Эти каналы образуются за счет некоторых трансмембранных белков, формирующих сквозные транспортные пути, открытые постоянно или только на короткое время. Через селективные каналы проникают различные молекулы, имеющие соответствующие каналам размер и заряд.

Имеется и другой путь простой диффузии - это диффузия веществ через липидный бислой, через который легко проходят жирорастворимые вещества и вода. Липидный бислой непроницаем для заряженных молекул (ионов), и в то же время незаряженные малые молекулы могут свободно диффундировать, при этом, чем меньше молекула, тем быстрее она транспортируется. Довольно большая скорость диффузии воды через липидный бислой как раз и объясняется малой величиной ее молекул и отсутствием заряда.

При облегченной диффузии в транспорте веществ участвуют белки – переносчики, работающие по принципу «пинг-понг». Белок при этом существует в двух конформационных состояниях: в состоянии «понг» участки связывания транспортируемого вещества открыты с наружной стороны бислоя, а в состоянии «пинг» такие же участки открываются с другой стороны. Этот процесс обратимый. С какой же стороны в данный момент времени будет открыт участок свя­зывания вещества, зависит от градиента концентрации, этого вещества.

Таким способом через мембрану проходят сахара и аминокислоты.

При облегченной диффузии скорость транспортировки веществ значительно возрастает в сравнении с простой диффузией.

Кроме белков-переносчиков, в облегченной диффузии принимают участие некоторые антибиотики, например, грамицидин и валиномицин.

Поскольку они обеспечивают транспорт ионов, их называют ионофорами .

Активный транспорт веществ в клетке. Этот вид транспорта всегда идет с затратой энергии. Источником энергии, необходимой для активного транспорта, является АТФ. Характерной особенностью этого вида транспорта является то, что он осуществляется двумя способами:

    с помощью ферментов, называемых АТФ-азами;

    транспорт в мембранной упаковке (эндоцитоз).

В наружной клеточной мембране присутствуют такие белки-ферменты, как АТФ-азы, функция которых заключается в обеспечении активного транспорта ионов против градиента концентрации. Поскольку они обеспечивают транспорт ионов, то этот процесс называют ионным насосом.

Известны четыре основные системы транспорта ионов в животной клетке. Три из них обеспечивают перенос через биологические мембраны.Na+ и К + , Са + , Н + , а четвертый - перенос протонов при работе дыхательной цепи митохондрии.

Примером механизма активного транспорта ионов может служить натрий-калиевый насос в животных клетках. Он поддерживает в клетке постоянную концентрацию ионов натрия и калия, которая отличается от кон­центрации этих веществ в окружающей среде: в норме в клетке ионов натрия бывает меньше, чем в окружающей среде, а калия - больше.

Вследствие этого по законам простой диффузии калий стремится уйти из клетки, а натрий диффундирует в клетку. В противовес простой диффузии натрий - калиевый насос постоянно выкачивает из клетки натрий и вводит калий: на три молекулы выбрасываемого наружу натрия приходится две молекулы вводимого в клетку калия.

Обеспечивает этот транспорт ионов натрий-калий зависимая АТФ-аза -фермент локализующийся в мембране таким образом, что пронизывает всю ее толщу, С внутренней стороны мембраны к этому ферменту поступает натрий и АТФ, а с наружной - калий.

Перенос натрия и калия через мембрану совершается в результате конформационных изменений, которые претерпевает натрий-калий зависимая АТФ-аза, активизирующаяся при повышении концентрации натрия внутри клетки или калия в окружающей среде.

Для энергообеспечения этого насоса необходим гидролиз АТФ. Этот процесс обеспечивает все тот же фермент натрий-калий зависимая АТФ-аза. При этом более одной трети АТФ, потребляемой животной клеткой в со­стоянии покоя, расходуется на работу натрий - калиевого насоса.

Нарушение правильной работы натрий - калиевого насоса приводит к различным серьезным заболеваниям.

КПД этого насоса превышает 50%, чего не достигают самые совершенные машины, созданные человеком.

Многие системы активного транспорта приводятся в действие за счет энергии, запасенной в ионных градиентах, а не путем прямого гидролиза АТФ. Все они работают как котранспортные системы (способствующие транспор­ту низкомолекулярных соединений). Например, активный транспорт некото­рых сахаров и аминокислот внутрь животных клеток обусловливается гра­диентом иона натрия, причем чем выше градиент ионов натрия, тем больше скорость всасывания глюкозы. И, наоборот, если концентрация натрия в межклеточном пространстве заметно уменьшается, транспорт глюкозы останавливается. При этом натрий должен присоединиться к натрий - зависимому белку-переносчику глюкозы, который имеет два участка связывания: один для глюкозы, другой для натрия. Ионы натрия, проникающие в клетку, способствуют введению в клетку и белка-переносчика вместе с глюкозой. Ионы на­трия, проникшие в клетку вместе с глюкозой, выкачиваются обратно натрий -калий зависимой АТФ-азой, которая, поддерживая градиент концентрации натрия, косвенным путем контролирует транспорт глюкозы.

Транспорт веществ в мембранной упаковке. Крупные молекулы биополимеров практически не могут проникать через плазмалемму ни одним из вышеописанных механизмов транспорта веществ в клетку. Они захватываются клеткой и поглощаются в мембранной упаковке, что получило название эндоцитоза . Последний формально разделяют на фагоцитоз и пиноцитоз. Захват клеткой твердых частиц - это фагоцитоз , а жидких - пиноцитоз . При эндоцитозе наблюдаются следующие стадии:

    рецепция поглощаемого вещества за счет рецепторов в мембране клеток;

    инвагинация мембраны с образованием пузырька (везикулы);

    отрыв эндоцитозного пузырька от мембраны с затратой энергии – образование фагосомы и восстановление целостности мембраны;

Слияние фагосомы с лизосомой и образование фаголизосомы (пищеварительной вакуоли ) в которой происходит переваривание поглощенных частиц;

    выведение непереваренного в фаголизосоме материала из клетки (экзоцитоз ).

В животном мире эндоцитоз является характерным способом питания многих одноклеточных организмов (например, у амеб), а среди много­ клеточных этот вид переваривания пищевых частиц встречается в энтодермальных клетках у кишечнополостных. Что касается млекопитающих и человека, то у них имеется ретикуло-гистио-эндотелиальная система клеток, обладающих способностью к эндоцитозу. Примером могут служить лейкоциты крови и купферовские клетки печени. Последние выстилают так называемые синусоидные капилляры печени и захватывают взвешенные в крови различные чужеродные частицы. Экзоцитоз - это и способ выведения из клетки многоклеточного организма секретируемого ею субстрата, необходимого для функции других клеток, тканей и органов.

Клетка — саморегулируемая структурно-функциональная единица тканей и органов. Клеточная теория строения органов и тканей была разработана Шлейденом и Шванном в 1839 г. В дальнейшем с помощью электронной микроскопии и ультрацентрифугирования удалось выяснить строение всех основных органелл животных и растительных клеток (рис. 1).

Рис. 1. Схема строения клетки животных организмов

Главными частями клетки являются цитоплазма и ядро. Каждая клетка окружена очень тонкой мембраной, ограничивающей ее содержимое.

Клеточная мембрана называется плазматической мембраной и характеризуется избирательной проницаемостью. Это свойство позволяет необходимым питательным веществам и химическим элементам проникать внутрь клетки, а излишним продуктам выходить из нее. Плазматическая мембрана состоит из двух слоев липидных молекул с включением в нее специфических белков. Основными липидами мембраны являются фосфолипиды. Они содержат фосфор, полярную головку и два неполярных хвоста из длинноцепочечных жирных кислот. К мембранным липидам относятся холестерин и эфиры холестерина. В соответствии с жидкостно-мозаичной моделью строения, мембраны содержат включения протеиновых и липидных молекул, которые могут перемешаться относительно бислоя. Для каждого типа мембран любой животной клетки характерен свой относительно постоянный липидный состав.

Мембранные белки по структуре подразделяют на два вида: интегральные и периферические. Периферические белки могут удаляться из мембраны без ее разрушения. Имеется четыре типа мембранных белков: транспортные белки, ферменты, рецепторы и структурные белки. Одни мембранные белки обладают ферментативной активностью, другие связывают определенные вещества и способствуют их переносу внутрь клетки. Белки обеспечивают несколько путей передвижения веществ через мембраны: образуют большие поры, состоящие из нескольких белковых субъединиц, которые позволяют перемещаться молекулам воды и ионам между клетками; формируют ионные каналы, специализированные для передвижения ионов некоторых видов через мембрану при определенных условиях. Структурные белки связаны с внутренним липидным слоем и обеспечивают цитоскелет клетки. Цитоскелет придает механическую прочность клеточной оболочке. В различных мембранах на долю белков приходится от 20 до 80% массы. Мембранные белки могут свободно перемещаться в латеральной плоскости.

В мембране присутствуют и углеводы, которые могут ковалентно связываться с липидами или белками. Известно три вида мембранных углеводов: гликолипиды (ганглиозиды), гликопротеиды и протеогликаны. Большинство липидов мембраны находятся в жидком состоянии и обладают определенной текучестью, т.е. способностью перемещаться из одного участка в другой. На внешней стороне мембраны имеются рецепторные участки, связывающие различные гормоны. Другие специфические участки мембраны мог>т распознавать и связывать некоторые чужеродные для данных клеток белки и разнообразные биологически активные соединения.

Внутреннее пространство клетки заполнено цитоплазмой, в которой протекает большинство катализируемых ферментами реакций клеточного метаболизма. Цитоплазма состоит из двух слоев: внутреннего, называемого эндоплазмой, и периферического — эктоплазмы, которая имеет большую вязкость и лишена гранул. В цитоплазме находятся все компоненты клетки или органеллы. Важнейшими из органелл клетки являются — эндоплазматический ретикулум, рибосомы, митохондрии, аппарат Гольджи, лизосомы, микрофиламенты и микротрубочки, пероксисомы.

Эндоплазматический ретикулум представляет собой систему взаимосвязанных каналов и полостей, пронизывающих всю цитоплазму. Он обеспечивает транспорт вешеств из окружающей среды и внутри клеток. Эндоплазматический ретикулум также служит депо для внутриклеточных ионов Са 2+ и служит основным местом синтеза липидов в клетке.

Рибосомы - микроскопические сферические частицы диаметром 10-25 нм. Рибосомы свободно располагаются в цитоплазме или прикрепляются к наружной поверхности мембран эндоплазматической сети и ядерной мембраны. Они взаимодействуют с информационной и транспортной РНК, и в них осуществляется синтез белков. Они синтезируют белки, которые попадают внутрь цистерн или в аппарат Гольджи, и затем выделяются наружу. Рибосомы, свободно располагающиеся в цитоплазме, синтезируют белок для использования самой клеткой, а рибосомы, связанные с эндоплазматическим ретикулумом, производят белок, который выводится из клетки. В рибосомах синтезируются различные функциональные белки: белки-переносчики, ферменты, рецепторы, белки цитоскелета.

Аппарат Гольджи образован системой канальцев, цистерн и пузырьков. Он связан с эндоплазматическим ретикулумом, и поступившие сюда биологически активные вещества хранятся в уплотненном виде в секреторных пузырьках. Последние постоянно отделяются от аппарата Гольджи, транспортируются к клеточной мембране и сливаются с ней, а содержащиеся в пузырьках вещества выводятся из клетки в процессе экзоцитоза.

Лизосомы - окруженные мембраной частицы размером 0,25-0,8 мкм. Они содержат многочисленные ферменты, участвующие в расщеплении белков, полисахаридов, жиров, нуклеиновых кислот, бактерий и клеток.

Пероксисомы сформированы из гладкого эндоплазматического ретикулума, напоминают лизосомы и содержат ферменты, катализирующие разложение пероксида водорода, который расщепляется под влиянием пероксидаз и каталазы.

Митохондрии содержат наружную и внутреннюю мембраны и являются «энергетической станцией» клетки. Митохондрии представляют собой округлые или удлиненные образования с двойной мембраной. Внутренняя мембрана формирует выступающие внутрь митохондрии складки — кристы. В них происходит синтез АТФ, осуществляется окисление субстратов цикла Кребса и множество биохимических реакций. Образованные в митохондриях молекулы АТФ диффундируют во все части клетки. В митохондриях содержится небольшое количество ДНК, РНК, рибосомы, и с их участием происходит обновление и синтез новых митохондрий.

Микрофиламенты представляют собой тонкие белковые нити, состоящие из миозина и актина, и образуют сократительный аппарат клетки. Микрофиламенты участвуют в образовании складок или выпячиваний клеточной мембраны, а также при перемещении различных структур внутри клеток.

Микротрубочки составляют основу цитоскелета и обеспечивают его прочность. Цитоскелет придает клеткам характерные внешний вид и форму, служит местом прикрепления внутриклеточных органелл и различных телец. В нервных клетках пучки микротрубочек участвуют в транспорте веществ из тела клетки к концам аксонов. При их участии осуществляется функционирование митотического веретена во время деления клеток. Они играют роль двигательных элементов в ворсинках и жгутиках у эукариот.

Ядро является основной структурой клетки, участвует в передаче наследственных признаков и в синтезе белков. Ядро окружено ядерной мембраной, содержащей множество ядерных пор, через которые происходит обмен различными веществами между ядром и цитоплазмой. Внутри него находится ядрышко. Установлена важная роль ядрышка в синтезе рибосомной РНК и белков-гистонов. В остальных частях ядра содержится хроматин, состоящий из ДНК, РНК и ряда специфических белков.

Функции клеточной мембраны

В регуляции внутриклеточного и межклеточного обмена важнейшую роль играют клеточные мембраны. Они обладают избирательной проницаемостью. Их специфическое строение позволяет обеспечивать барьерную, транспортную и регуляторную функции.

Барьерная функция проявляется в ограничении проникновения через мембрану растворенных в воде соединений. Мембрана непроницаема для крупных белковых молекул и органических анионов.

Регуляторная функция мембраны состоит в регуляции внутриклеточного метаболизма в ответ на химические, биологические и механические воздействия. Различные воздействия воспринимаются специальными мембранными рецепторами с последующим изменением активности ферментов.

Транспортная функция через биологические мембраны может осуществляться пассивно (диффузия, фильтрация, осмос) или с помощью активного транспорта.

Диффузия - движение газа или растворимого вещества по концентрационному и электрохимическому градиенту. Скорость диффузии зависит от проницаемости клеточной мембраны, а также градиента концентрации для незаряженных частиц, электрического и концентрационного градиентов для заряженных частиц. Простая диффузия происходит через липидный бислой или через каналы. Заряженные частицы движутся согласно электрохимическому градиенту, а незаряженные — химическому градиенту. Например, простой диффузией через липидный слой мембраны проникают кислород, стероидные гормоны, мочевина, спирт и т.д. Через каналы перемещаются различные ионы и частицы. Ионные каналы образованы белками и подразделяются на управляемые и неуправляемые каналы. В зависимости от селективности различают ионоселективные канаты, пропускающие только один ион, и каналы, не обладающие селективностью. Каналы имеют устье и селективный фильтр, а управляемые каналы — и воротный механизм.

Облегченная диффузия - процесс, при котором вещества переносятся через мембрану с помощью специальных мембранных белков- переносчиков. Таким путем в клетку проникают аминокислоты и моносахара. Этот вид транспорта происходит очень быстро.

Осмос - движения воды через мембрану из раствора с более низким в раствор с более высоким осмотическим давлением.

Активный транспорт - перенос веществ против градиента концентрации с помощью транспортных АТФаз (ионных насосов). Этот перенос происходит с затратой энергии.

В большей мере изучены Na + /K + -, Са 2+ - и Н + -насосы. Насосы располагаются на клеточных мембранах.

Разновидностью активного транспорта являются эндоцитоз и экзоцитоз. С помощью этих механизмов транспортируются более крупные вещества (белки, полисахариды, нуклеиновые кислоты), которые не могут переноситься по каналам. Этот транспорт более распространен в эпителиальных клетках кишечника, почечных канальцев, эндотелии сосудов.

При эндоцитозе клеточные мембраны образуют впячивания внутрь клетки, которые отшнуровываясь, превращаются в пузырьки. При экзоцитозе пузырьки с содержимым переносятся к клеточной мембране и сливаются с ней, а содержимое пузырьков выделяется во внеклеточную среду.

Строение и функции клеточной мембраны

Для понимания процессов, обеспечивающих существование электрических потенциалов в живых клетках, прежде всего нужно представлять строение клеточной мембраны и ее свойства.

В настоящее время наибольшим признанием пользуется жидкостно-мозаичная модель мембраны, предложенная С. Сингером и Г. Николсоном в 1972 г. Основу мембраны составляет двойной слой фосфолипидов (бислой), гидрофобные фрагменты молекулы которого погружены в толщу мембраны, а полярные гидрофильные группы ориентированы наружу, т.е. в окружающую водную среду (рис. 2).

Мембранные белки локализованы на поверхности мембраны или могут быть внедрены на различную глубину в гидрофобную зону. Некоторые белки пронизывают мембрану насквозь, и различные гидрофильные группы одного и того же белка обнаруживаются по обе стороны клеточной мембраны. Белки, обнаруженные в плазматической мембране, играют очень важную роль: они участвуют в образовании ионных каналов, играют роль мембранных насосов и переносчиков различных веществ, а также могут выполнять рецептор- ную функцию.

Основные функции клеточной мембраны: барьерная, транспортная, регуляторная, каталитическая.

Барьерная функция заключается в ограничении диффузии через мембрану растворимых в воде соединений, что необходимо для защиты клеток от чужеродных, токсических веществ и сохранения внутри клеток относительного постоянного содержания различных веществ. Так, клеточная мембрана может замедлить диффузию различных веществ в 100 000-10 000 000 раз.

Рис. 2. Трехмерная схема жидкостно-мозаичной модели мембраны Сингера-Николсона

Изображены глобулярные интегральные белки, погруженные в липидный бислой. Часть белков является ионными каналами, другие (гликопротеины) содержат олигосахаридные боковые цепи, участвующие в узнавании клетками друг друга и в межклеточной ткани. Молекулы холестерола вплотную примыкают к фосфолипидным головкам и фиксируют прилегающие участки «хвостов». Внутренние участки хвостов молекулы фосфолипидов не ограничены в своем движении и ответственны за текучесть мембраны (Bretscher, 1985)

В мембране располагаются каналы, через которые проникают ионы. Каналы бывают потенциал зависимыми и потен циалнезависимыми. Потенциалзависимые каналы открываются при изменении разности потенциалов, а потенциалнезависимые (гормонрегулируемые) открываются при взаимодействии рецепторов с веществами. Каналы могут быть открыты или закрыты благодаря воротам. В мембрану встроены два вида ворот: активационные (в глубине канала) и инактивационные (на поверхности канала). Ворота могут находиться в одном из трех состояний:

  • открытое состояние (открыты оба вида ворот);
  • закрытое состояние (закрыты активационные ворота);
  • инактивационное состояние (закрыты инактивационные ворота).

Другой характерной особенностью мембран является способность осуществлять избирательный перенос неорганических ионов, питательных веществ, а также различных продуктов обмена. Различают системы пассивного и активного переноса (транспорта) веществ. Пассивный транспорт осуществляется через ионные каналы с помощью или без помощи белков-переносчиков, а его движущей силой является разность электрохимических потенциалов ионов между внутри- и внеклеточным пространством. Избирательность ионных каналов определяется его геометрическими параметрами и химической природой групп, выстилающих стенки канала и его устье.

В настоящее время наиболее хорошо изучены каналы, обладающие избирательной проницаемостью для ионов Na + , К+ , Са 2+ а также для воды (так называемые аквапорины). Диаметр ионных каналов, по оценкам разных исследований, составляет 0,5-0,7 нм. Пропускная способность каналов может изменяться, через один ионный канал может проходить 10 7 - 10 8 ионов в секунду.

Активный транспорт происходит с затратой энергии и осуществляется так называемыми ионными насосами. Ионные насосы — это молекулярные белковые структуры, встроенные в мембрану и осуществляющие перенос ионов в сторону более высокого электрохимического потенциала.

Работа насосов осуществляется за счет энергии гидролиза АТФ. В настоящее время хорошо изучены Na+/K+ — АТФаза, Са 2+ — АТФаза, Н + — АТФаза, Н + /К + — АТФаза, Mg 2+ — АТФаза, которые обеспечивают перемещение соответственно ионов Na + , К + , Са 2+ , Н+, Mg 2+ изолированно или сопряжено (Na+ и К+; Н+ и К+). Молекулярный механизм активного транспорта до конца не выяснен.



Похожие публикации