Исследовать заданные функции методами дифференциального исчисления онлайн. MY adept путевые заметки

На этой странице мы постарались собрать для вас наиболее полную информацию об исследовании функции. Больше не надо гуглить! Просто читайте, изучайте, скачивайте, переходите по отобранным ссылкам.

Общая схема исследования

Для чего нужно это исследование, спросите вы, если есть множество сервисов, которые построят для самых замудренных функций? Для того, чтобы узнать свойства и особенности данной функции: как ведет себя на бесконечности, насколько быстро меняет знак, как плавно или резко возрастает или убывает, куда направлены "горбы" выпуклости, где не определены значения и т.п.

А уже на основании этих "особенностей" и строится макет графика - картинка, которая на самом-то деле вторична (хотя в учебных целях важна и подтверждает правильность вашего решения).

Начнем, конечно же, с плана . Исследование функции - объемная задача (пожалуй, самая объемная из традиционного курса высшей математики, обычно от 2 до 4 страниц с учетом чертежа), поэтому, чтобы не забыть, что в каком порядке делать, следуем пунктам, описанным ниже.

Алгоритм

  1. Найти область определения. Выделить особые точки (точки разрыва).
  2. Проверить наличие вертикальных асимптот в точках разрыва и на границах области определения.
  3. Найти точки пересечения с осями координат.
  4. Установить, является ли функция чётной или нечётной.
  5. Определить, является ли функция периодической или нет (только для тригонометрических функций).
  6. Найти точки экстремума и интервалы монотонности.
  7. Найти точки перегиба и интервалы выпуклости-вогнутости.
  8. Найти наклонные асимптоты. Исследовать поведение на бесконечности.
  9. Выбрать дополнительные точки и вычислить их координаты.
  10. Построить график и асимптоты.

В разных источниках (учебниках, методичках, лекциях вашего преподавателя) список может иметь отличный от данного вид: некоторые пункты меняются местами, объединяются с другими, сокращаются или убираются. Учитывайте требования/предпочтения вашего учителя при оформлении решения.

Схема исследования в формате pdf: скачать .

Полный пример решения онлайн

Провести полное исследование и построить график функции $$ y(x)=\frac{x^2+8}{1-x}. $$

1) Область определения функции. Так как функция представляет собой дробь, нужно найти нули знаменателя. $$1-x=0, \quad \Rightarrow \quad x=1.$$ Исключаем единственную точку $x=1$ из области определения функции и получаем: $$ D(y)=(-\infty; 1) \cup (1;+\infty). $$

2) Исследуем поведение функции в окрестности точки разрыва. Найдем односторонние пределы:

Так как пределы равны бесконечности, точка $x=1$ является разрывом второго рода, прямая $x=1$ - вертикальная асимптота.

3) Определим точки пересечения графика функции с осями координат.

Найдем точки пересечения с осью ординат $Oy$, для чего приравниваем $x=0$:

Таким образом, точка пересечения с осью $Oy$ имеет координаты $(0;8)$.

Найдем точки пересечения с осью абсцисс $Ox$, для чего положим $y=0$:

Уравнение не имеет корней, поэтому точек пересечения с осью $Ox$ нет.

Заметим, что $x^2+8>0$ для любых $x$. Поэтому при $x \in (-\infty; 1)$ функция $y>0$ (принимает положительные значения, график находится выше оси абсцисс), при $x \in (1; +\infty)$ функция $y\lt 0$ (принимает отрицательные значения, график находится ниже оси абсцисс).

4) Функция не является ни четной, ни нечетной, так как:

5) Исследуем функцию на периодичность. Функция не является периодической, так как представляет собой дробно-рациональную функцию.

6) Исследуем функцию на экстремумы и монотонность. Для этого найдем первую производную функции:

Приравняем первую производную к нулю и найдем стационарные точки (в которых $y"=0$):

Получили три критические точки: $x=-2, x=1, x=4$. Разобьем всю область определения функции на интервалы данными точками и определим знаки производной в каждом промежутке:

При $x \in (-\infty; -2), (4;+\infty)$ производная $y" \lt 0$, поэтому функция убывает на данных промежутках.

При $x \in (-2; 1), (1;4)$ производная $y" >0$, функция возрастает на данных промежутках.

При этом $x=-2$ - точка локального минимума (функция убывает, а потом возрастает), $x=4$ - точка локального максимума (функция возрастает, а потом убывает).

Найдем значения функции в этих точках:

Таким образом, точка минимума $(-2;4)$, точка максимума $(4;-8)$.

7) Исследуем функцию на перегибы и выпуклость. Найдем вторую производную функции:



Приравняем вторую производную к нулю:

Полученное уравнение не имеет корней, поэтому точек перегиба нет. При этом, когда $x \in (-\infty; 1)$ выполняется $y"" \gt 0$, то есть функция вогнутая, когда $x \in (1;+\infty)$ выполняется $y"" \lt 0$, то есть функция выпуклая.

8) Исследуем поведение функции на бесконечности, то есть при .

Так как пределы бесконечны, горизонтальных асимптот нет.

Попробуем определить наклонные асимптоты вида $y=kx+b$. Вычисляем значения $k, b$ по известным формулам:


Получили, у что функции есть одна наклонная асимптота $y=-x-1$.

9) Дополнительные точки. Вычислим значение функции в некоторых других точках, чтобы точнее построить график.

$$ y(-5)=5.5; \quad y(2)=-12; \quad y(7)=-9.5. $$

10) По полученным данным построим график, дополним его асимптотами $x=1$ (синий), $y=-x-1$ (зеленый) и отметим характерные точки (фиолетовым пересечение с осью ординат, оранжевым экстремумы, черным дополнительные точки):

Примеры решений по исследованию функции

Разные функции (многочлены, логарифмы, дроби) имеют свои особенности при исследовании (разрывы, асимптоты, количество экстремумов, ограниченная область определения), поэтому здесь мы пострались собрать примеры из контрольных на исследование функций наиболее часто встречающихся типов. Удачи в изучении!

Задача 1. Исследовать функцию методами дифференциального исчисления и построить график.

$$y=\frac{e^x}{x}.$$

Задача 2. Исследовать функцию и построить ее график.

$$y=-\frac{1}{4}(x^3-3x^2+4).$$

Задача 3. Исследовать функцию с помощью производной и построить график.

$$y=\ln \frac{x+1}{x+2}.$$

Задача 4. Провести полное исследование функции и построить график.

$$y=\frac{x}{\sqrt{x^2+x}}.$$

Задача 5. Исследовать функцию методом дифференциального исчисления и построить график.

$$y=\frac{x^3-1}{4x^2}.$$

Задача 6. Исследовать функцию на экстремумы, монотонность, выпуклость и построить график.

$$y=\frac{x^3}{x^2-1}.$$

Задача 7. Проведите исследование функции с построением графика.

$$y=\frac{x^3}{2(x+5)^2}.$$

Как построить график онлайн?

Даже если преподаватель требует вас сдавать задание, написанное от руки , с чертежом на листке в клеточку, вам будет крайне полезно во время решения построить график в специальной программе (или сервисе), чтобы проверить ход решения, сравнить его вид с тем, что получается вручную, возможно, найти ошибки в своих расчетах (когда графики явно ведут себя непохоже).

Ниже вы найдете несколько ссылок на сайты, которые позволяют построить удобно, быстро, красиво и, конечно, бесплатно графики практически любых функций. На самом деле таких сервисов гораздо больше, но стоит ли искать, если выбраны лучшие?

Графический калькулятор Desmos

Вторая ссылка практическая, для тех, кто хочет научиться строить красивые графики в Desmos.com (см. выше описание): Полная инструкция по работе с Desmos . Эта инструкция довольно старая, с тех пор интерфейс сайта поменялся в лучшую сторону, но основы остались неизменными и помогут быстро разобраться с важными функциями сервиса.

Официальные инструкции, примеры и видео-инструкции на английском можно найти тут: Learn Desmos .

Решебник

Срочно нужна готовая задача? Более сотни разных функций с полным исследованием уже ждут вас. Подробное решение, быстрая оплата по SMS и низкая цена - около 50 рублей . Может, и ваша задача уже готова? Проверьте!

Полезные видео-ролики

Вебинар по работе с Desmos.com. Это уже полноценный обзор функций сайта, на целых 36 минут. К сожалению, он на английском языке, но базовых знаний языка и внимательности достаточно, чтобы понять большую часть.

Классный старый научно-популярный фильм "Математика. Функции и графики". Объяснения на пальцах в прямом смысле слова самых основ.

Исследуем функцию \(y= \frac{x^3}{1-x} \) и построим ее график.


1. Область определения.
Областью определения рациональной функции (дробь) будет: знаменатель не равен нулю, т.е. \(1 -x \ne 0 => x \ne 1\). Область определения $$D_f= (-\infty; 1) \cup (1;+\infty)$$


2. Точки разрыва функции и их классификация.
Функция имеет одну точку разрыва x = 1
исследуем точку x= 1. Найдем предел функции справа и слева от точки разрыва, справа $$ \lim_{x \to 1+0} (\frac{x^3}{1-x}) = -\infty $$ и слева от точки $$ \lim_{x \to 1-0}(\frac{x^3}{1-x}) = +\infty $$ Это точка разрыва второго рода т.к. односторонние пределы равны \(\infty\).


Прямая \(x = 1\) является вертикальной асимптотой.


3. Четность функции.
Проверяем на четность \(f(-x) = \frac{(-x)^3}{1+x} \) функция не является ни четной ни нечетной.


4. Нули функции (точки пересечения с осью Ox). Интервалы знакопостоянства функции .
Нули функции (точка пересечения с осью Ox) : приравняем \(y=0\), получим \(\frac{x^3}{1-x} = 0 => x=0 \). Кривая имеет одну точку пересечения с осью Ox с координатами \((0;0)\).


Интервалы знакопостоянства функции.
На рассматриваемых интервалах \((-\infty; 1) \cup (1;+\infty)\) кривая имеет одну точку пересечения с осью Ox , поэтому будем рассматривать на трех интервалах области определения.


Определим знак функции на интервалах области определения:
интервал \((-\infty; 0) \) найдем значение функции в любой точке \(f(-4) = \frac{x^3}{1-x} < 0 \), на этом интервале функция отрицательная \(f(x) < 0 \), т.е. находится ниже оси Ox
интервал \((0; 1) \) найдем значение функции в любой точке \(f(0.5) = \frac{x^3}{1-x} > 0 \), на этом интервале функция положительная \(f(x) > 0 \), т.е. находится выше оси Ox.
интервал \((1;+\infty) \) найдем значение функции в любой точке \(f(4) = \frac{x^3}{1-x} < 0 \), на этом интервале функция отрицательная \(f(x) < 0 \), т.е. находится ниже оси Ox


5. Точки пересечения с осью Oy : приравняем \(x=0 \), получаем \(f(0) = \frac{x^3}{1-x} = 0\). Координаты точки пересечения с осью Oy \((0; 0)\)


6. Интервалы монотонности. Экстремумы функции.
Найдем критические (стационарные) точки, для этого найдем первую производную и приравняем ее к нулю $$ y" = (\frac{x^3}{1-x})" = \frac{3x^2(1-x) +x^3}{ (1-x)^2} = \frac{x^2(3-2x)}{ (1-x)^2} $$ приравняем к 0 $$ \frac{x^2(3-2x)}{ (1-x)^2} = 0 => x_1 = 0 \quad x_2= \frac{3}{2}$$ Найдем значение функции в этой точке \(f(0) = 0\) и \(f(\frac{3}{2}) = -6.75\). Получили две критические точки с координатами \((0;0)\) и \((1.5;-6.75)\)


Интервалы монотонности.
Функция имеет две критические точки (точек возможного экстремума), поэтому монотонность будем рассматривать на четырех интервалах:
интервал \((-\infty; 0) \) найдем значение первой производной в любой точке интервала \(f(-4) = \frac{x^2(3-2x)}{ (1-x)^2} >
интервал \((0;1)\) найдем значение первой производной в любой точке интервала \(f(0.5) = \frac{x^2(3-2x)}{ (1-x)^2} > 0\), на этом интервале функция возрастает.
интервал \((1;1.5)\) найдем значение первой производной в любой точке интервала \(f(1.2) = \frac{x^2(3-2x)}{ (1-x)^2} > 0\), на этом интервале функция возрастает.
интервал \((1.5; +\infty)\) найдем значение первой производной в любой точке интервала \(f(4) = \frac{x^2(3-2x)}{ (1-x)^2} < 0\), на этом интервале функция убывает.


Экстремумы функции.


При исследовании функции получили на интервале области определения две критические (стационарные) точки. Определим, являются ли они экстремумами. Рассмотрим изменение знака производной при переходе через критические точки:


точка \(x = 0\) производная меняет знак с \(\quad +\quad 0 \quad + \quad\) - точка экстремумом не является.
точка \(x = 1.5\) производная меняет знак с \(\quad +\quad 0 \quad - \quad\) - точка является точкой максимума.


7. Интервалы выпуклости и вогнутости. Точки перегиба.


Для нахождения интервалов выпуклости и вогнутости найдем вторую производную функции и приравняем ее к нулю $$y"" = (\frac{x^2(3-2x)}{ (1-x)^2})"= \frac{2x(x^2-3x+3)}{(1-x)^3} $$Приравняем к нулю $$ \frac{2x(x^2-3x+3)}{(1-x)^3}= 0 => 2x(x^2-3x+3) =0 => x=0$$ Функция имеет одну критическую точку второго рода с координатами \((0;0)\).
Определим выпуклость на интервалах области определения с учетом критической точки второго рода (точки возможного перегиба).


интервал \((-\infty; 0)\) найдем значение второй производной в любой точке \(f""(-4) = \frac{2x(x^2-3x+3)}{(1-x)^3} < 0 \), на этом интервале вторая производная функции отрицательная \(f""(x) < 0 \) - функция выпуклая вверх (вогнутая).
интервал \((0; 1)\) найдем значение второй производной в любой точке \(f""(0.5) = \frac{2x(x^2-3x+3)}{(1-x)^3} > 0 \), на этом интервале вторая производная функции положительная \(f""(x) > 0 \) функция выпуклая вниз (выпуклая).
интервал \((1; \infty)\) найдем значение второй производной в любой точке \(f""(4) = \frac{2x(x^2-3x+3)}{(1-x)^3} < 0 \), на этом интервале вторая производная функции отрицательная \(f""(x) < 0 \) - функция выпуклая вверх (вогнутая).


Точки перегиба.


Рассмотрим изменение знака второй производной при переходе через критическую точку второго рода:
В точке \(x =0\) вторая производная меняет знак с \(\quad - \quad 0 \quad + \quad\), график функции меняет выпуклость, т.е. это точка перегиба с координатами \((0;0)\).


8. Асимптоты.


Вертикальная асимптота . График функции имеет одну вертикальную асимптоту \(x =1\) (см. п.2).
Наклонная асимптота.
Для того, чтобы график функции \(у= \frac{x^3}{1-x} \) при \(x \to \infty\) имел наклонную асимптота \(y = kx+b\), необходимо и достаточно, чтобы существовали два предела $$\lim_{x \to +\infty}=\frac{f(x)}{x} =k $$находим его $$ \lim_{x \to \infty} (\frac{x^3}{x(1-x)}) = \infty => k= \infty $$ и второй предел $$ \lim_{x \to +\infty}(f(x) - kx) = b$$, т.к. \(k = \infty\) - наклонной асимптоты нет.


Горизонтальная асимптота: для того, чтобы существовала горизонтальная асимптота, необходимо, чтобы существовал предел $$\lim_{x \to \infty}f(x) = b$$ найдем его $$ \lim_{x \to +\infty}(\frac{x^3}{1-x})= -\infty$$$$ \lim_{x \to -\infty}(\frac{x^3}{1-x})= -\infty$$
Горизонтальной асимптоты нет.


9. График функции.



Похожие публикации