Методы дистанционного зондирования в геодезии. Понятие дистанционного зондирования

О том, что такое дистанционное зондирование Земли (ДЗЗ) и какое оно имеет практическое применение, мы поговорили с доктором технических наук, заместителем директора Института космических исследований РАН Евгением Лупяном .

Время спутников-шпионов прошло?

— Евгений Аркадьевич, сколько сейчас в космосе аппаратов, которые ведут наблюдения за поверхностью Земли? И сколько из них российских?

— Всего на орбитах летает около 400 спутников, занятых именно дистанционным зондированием. Планируется, что к 2020 году их будет 1200-1300. К сожалению, российских аппаратов среди них очень мало: всего 9 штук. Согласитесь, это не очень хорошая ситуация. Было время, когда наша страна занимала одну из лидирующих позиций в этой области, но потом сдала её. Сейчас мы пытаемся её восстановить.

Дистанционное зондирование Земли — очень перспективное направление, ведь возможности систем наблюдения за планетой из космоса постоянно растут. Несколько лет назад в этой сфере произошла революция. Американская компания PlanetLab запустила в космос целый рой малых аппаратов: более 200 спутников! Они производят съёмку с разрешением порядка 3-4 метров, при этом за сутки фактически покрывают всю поверхность планеты. Для сравнения: чтобы выполнить такую съёмку нашими аппаратами серии «Канопус» (в настоящее время их на орбите 6 штук), понадобится несколько месяцев.

Канопус-В на «МАКСе»-2013. Фото: Commons.wikimedia.org / Vitaly V. Kuzmin

Другое важное событие, повлиявшее на развитие дистанционного зондирования Земли, произошло несколько лет назад. Тогда американские и европейские космические агентства открыли свободный доступ к значительным объёмам своих данных, которые имеют разрешение хуже 10 метров. Это существенно расширило возможности по созданию новых методов и технологий работы с данными. В первую очередь — для проведения постоянного мониторинга различных объектов и явлений. До этого решение подобных задач, как правило, было нерентабельным из-за больших затрат на приобретение данных.

— Похоже, что на поверхности Земли уже трудно что-то скрыть. Неужели время спутников-шпионов безвозвратно прошло?

— Не совсем так. Задачи у таких спутников, безусловно, остались. Технически они также совершенствуются. Но появились совершенно новые области, в которых стало возможно использовать данные дистанционного зондирования.

80% прогноза погоды — из космоса

— На какой высоте летают спутники дистанционного зондирования?

— Так называемые низкоорбитальные обычно располагаются на орбитах с высотами от 400 до 800 км. Один оборот вокруг Земли у них занимает около 90 минут.

Есть геостационарные спутники, которые летают на высоте 36 тыс. км. Точнее, они не летают, а всё время висят в одной точке. Их разрешение не очень велико: у лучших аппаратов оно может составлять 500 метров. Но зато они позволяют проводить наблюдения каждые 10 минут, а в некоторых случаях — каждые 2 минуты. Это очень важно, когда мы следим за быстро развивающимися процессами. Например, за извержениями вулканов и движением выброшенных ими пепловых облаков.

— Спутники запускают, чтобы следить за вулканами? Это так важно?

— Людям, живущим в Москве, пепловые выбросы вулканов, наверное, кажутся чем-то несущественным. Но это ровно до того момента, пока им не понадобится покупать билет на самолёт, чтобы лететь куда-то в другой район Земли. Напомню, что в 2010 году из-за извержения вулкана в Исландии воздушное пространство Европы было на несколько дней закрыто для авиаперелётов.

У дистанционного зондирования Земли огромное количество прикладных применений. Это мониторинг и предсказание природных бедствий: не только извержений вулканов, но и пожаров, наводнений, ураганов и др. Это прогнозы погоды: 80% информации, которая используется для этих целей, получена из космоса.

Это, например, сельское хозяйство. С помощью спутников оценивают состояние посевов, характеристики почвы (влажность, эрозию), анализируют, каким образом нужно вести обработку посевов, чтобы достичь максимальных урожаев на конкретном поле (так называемые задачи точного земледелия). Спутники помогают понять, как развиваются во времени те или иные сельхозкультуры в разных регионах Земли. К примеру, пшеница. Глядя на серию спутниковых снимков и сравнивая их с наблюдениями предыдущих лет, мы, в частности, можем получить заблаговременную оценку урожая в конкретном году.

А возьмём лесное хозяйство. Его уже и представить нельзя без спутникового мониторинга. Наверное, не стоит напоминать, что значит для нашей страны лес. Современные спутниковые методы позволяют составлять карты лесов, следить за пожарами, оперативно обнаруживать их и оптимизировать работы по тушению. Система, которая решает подобные задачи на всей территории страны, была создана ещё 2005 году. И с той поры постоянно работает.

И от сердечного приступа спасёт

— Мне доводилось слышать, что со спутников даже косяки рыб в океане отслеживают. Это так?

— Напрямую не отслеживают. Там используется такая схема. Рыба, как известно, питается планктоном. Со спутника хорошо видно, где сколько планктона, какой у него цвет и прочие характеристики. И по этим данным можно предположить, придёт ли в этот район рыба. Соответственно, можно послать уведомление рыболовным судам.

Технологии дистанционного зондирования Земли уже дошли до того, что позволяют измерять энергопотери жилых домов. На детальном уровне! А это открывает новые возможности энергетикам и коммунальщикам. Используя полученные сведения, они могут менять структуру утепления зданий.

Как раз недавно наши коллеги из Научно-исследовательского центра экологической безопасности РАН получили очень интересные факты по Питеру. Там были сделаны замеры выделений тепла по разным районам. Потом взяли различные сценарии климатических изменений и получили прогноз повышения смертности от сердечно-сосудистых заболеваний в тех или иных городских районах. Вот вам пример того, как на основе дистанционного зондирования Земли можно получать информацию для планирования медицинского обслуживания. Вовремя принятые меры помогут спасти жизни конкретным людям.

— Их переселят из районов, где слишком тепло, в более прохладные?

— Есть менее радикальные меры. Можно посадить там деревья, покрасить крыши домов специальной отражающей краской. Или просто в белый цвет.

— Мы сильно отстаём от США и Китая по количеству спутников ДЗЗ. Вы сами сказали, что их у нас только 9. Но в чём-то мы имеем приоритет в этой области?

— Имеем. Как я уже сказал, многие иностранные компании сейчас открыли доступ к своим данным, сделали информацию бесплатной. А в России очень хорошая школа программирования и обработки данных. Мы сделали алгоритмы, которые получают из этих находящихся в открытом доступе данных определённые характеристики, анализируют их и позволяют использовать для решения различных задач.

В стране очень быстро развиваются новые технологии, благодаря которым можно эффективно работать со сверхбольшими потоками данных от различных систем ДЗЗ. Есть успехи в создании центров, обеспечивающих возможности распределённой работы с архивами этих данных. Например, такой центр коллективного пользования создан в нашем Институте космических исследований РАН. Около 80 научных организаций, находящихся в разных городах нашей (да и не только нашей) страны, пользуются его возможностями.

По своей функциональности наш центр входит если не в тройку, то уж точно в пятёрку подобных мировых центров. Конечно, в чисто аппаратном плане нам трудно конкурировать с компаниями Google и Amazon. В первую очередь — из-за несопоставимости финансовых ресурсов, которые они выделяют своим центрам на развитие. Но это заставляет нас искать новые подходы и решения. И мы их находим.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

ДИСТАНЦИОННОЕ

ЗОНДИРОВАНИЕ ЗЕМЛИ ПРИ ГЕОЛОГИЧЕСКИХ

ИССЛЕДОВАНИЯХ

Учебное пособие для вузов

Составители: А. И. Трегуб, О. В. Жаворонкин

Издательско-полиграфический центр Воронежского государственного университета

Рецензент кандидат геолого-минералогических наук, доцент кафедры полезных ископаемых и недропользования Ю. Н. Стрик

Учебное пособие подготовлено на кафедре общей геологии и геодинамики геологического факультета Воронежского государственного университета.

Рекомендуется для студентов очной и заочной форм обучения геологического факультета Воронежского государственного университета при изучении курсов: «Дистанционное зондирование Земли», «Аэрокосмические исследования литосферы», «Аэрокосмические методы».

Для направления: 020300 – Геология

ВВЕДЕНИЕ .......................................................................................................

1. ТЕХНИЧЕСКИЕ СРЕДСТВА И ТЕХНОЛОГИИ

АЭРОКОСМОСЪЕМКИ ................................................................................

1.1. Аэросъемка.........................................................................................

1.2. Космическая съемка...........................................................................

1.3. Краткая характеристика космических съемочных систем

некоторых стран......................................................................................

2. МАТЕРИАЛЫ ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ

ЗЕМЛИ В ГЕОЛОГИЧЕСКИХ ИССЛЕДОВАНИЯХ............................

2.1. Физические основы дистанционного зондирования Земли.........

2.2. Материалы дистанционного зондирования Земли........................

2.3. Обработка и преобразование материалов дистанционного

зондирования Земли................................................................................

2.4. Обработка и преобразование цифрового рельефа........................

2.5. Пакеты программ для обработки и анализа материалов

дистанционного зондирования Земли...................................................

3. МЕТОДИЧЕСКИЕ ОСНОВЫ ДЕШИФРИРОВАНИЯ

МАТЕРИАЛОВ ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ

ЗЕМЛИ .............................................................................................................

3.1. Общие принципы дешифрирования материалов

дистанционного зондирования..............................................................

3.2. Дешифровочные признаки..............................................................

3.3. Методы дешифрирования................................................................

4. ГЕОЛОГИЧЕСКОЕ ДЕШИФРИРОВАНИЕ МАТЕРИАЛОВ

ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ ...............................................

4.1. Дешифрирование коренных пород.................................................

4.2. Дешифрирование четвертичных образований..............................

4.3. Геоморфологическое дешифрирование..........................................

5. ПРИМЕНЕНИЕ МАТЕРИАЛОВ ДИСТАНЦИОННОГО

ЗОНДИРОВАНИЯ ЗЕМЛИ ПРИ ГЕОЛОГИЧЕСКОМ

КАРТИРОВАНИИ И ПОИСКОВЫХ РАБОТАХ .....................................

5.1. Материалы дистанционного зондирования при геологическом

картировании...........................................................................................

5.2. Материалы дистанционного зондирования

при прогнозно-поисковых исследованиях............................................

ЛИТЕРАТУРА .................................................................................................

ВВЕДЕНИЕ

Дистанционное зондирование Земли (ДЗЗ) – это изучение нашей планеты с помощью воздушных и космических летательных аппаратов, на которых установлены различные сенсоры (датчики), позволяющие получить информацию о характере поверхности Земли, состоянии ее воздушной и водной оболочек, о ее геофизических полях. Материалы дистанционного зондирования используются в самых разных отраслях народного хозяйства. Важнейшее значение они имеют и при геологических исследованиях.

Историю развития методов дистанционного зондирования

(МДЗ) обычно начинают с 1783 года, с первого запуска аэростата братьев Монгольфье, положившего начало аэровизуальным наблюдениям поверхностиЗемли. В1855 годупервыефотографиисвоздушногошара, полученные с высоты около 300 м, были использованы для составления точного плана г. Парижа. Для геологических целей фотографирование Альп с высоких вершин впервые применил французский геолог Эмме Цивилье (1858–1882).

Начало использования аэрофотосъемки в России датируется

1866 годом, когда поручик А. М. Ковалько с воздушного шара на высотах от 600 до 1000 метров произвел съемку Санкт-Петербурга и Кронштадта. Систематические съемки в России для составления топографических карт и исследований природных ресурсов начались с 1925 года, с момента зарождения гражданской авиации. В этих целях в 1929 году

в Ленинграде был образован институт аэрофотосъемки. Инициатором его создания и первым директором был академик Александр Евгеньевич Ферсман. С 1938 года использование материалов аэрофотосъемки стало обязательным при проведении геолого-съемочных работ. В сороковых годах при Геологическом комитете была создана Аэрофотогеологическая экспедиция, преобразованная в 1949 году во Всесоюзный аэрогеологический трест (ВАГТ), который позднее был реорганизован

в научно-производственное геологическое объединение «Аэрогеология» (ныне ФГУНПП «Аэрогеология»). Параллельно в то же время была образована Лаборатория аэрометодов «ЛАЭМ» (ныне «Науч- но-исследовательский институт космоаэрогеологических методов» – ГУП «ВНИИКАМ»). В результате их деятельности к 1957 году была проведена мелкомасштабная съемка всей территории СССР и составлена Государственная геологическая карта в масштабе 1: 1 000 000. В шестидесятые-семидесятые годы разработаны и внедрены в произ-

водство новые виды региональных исследований: групповая геологическая съемка (ГГС) и аэрофотогеологическое картирование (АФГК); появились спектрозональная, тепловая, радиолокационная съемки. Развитие аэрометодов предопределило переход дистанционного зондирования Земли на новый качественный уровень – изучение Земли из космоса.

Развитие космонавтики начиналось с разработки баллистических ракет, которые использовались, в частности, для производства фотосъемки поверхности Земли с больших (около 200 км) высот. Первые снимки были получены 24 октября 1946 года с помощью ракеты V-2 (немецкой ракеты Fau-2), запущенной с полигона White Sands (США) на суборбитальную траекторию. Была произведена съемка земной поверхности 35-миллиметровой кинокамерой на черно-белую фотопленку с высоты около 120 км. До конца пятидесятых годов фотосъемка земной поверхности преимущественно в военных целях проводилась разными странами с помощью баллистических ракет.

былзапущенпервыйвмиреискусственныйспутникЗемли(ИСЗ) – ПС-1 (Простейший спутник – 1). Для выведения на орбиту была использована баллистическая ракета Р-7 («Спутник»). Масса спутника составляла 83,6 кг, диаметр– 0,58 м, периодобращения96,7 мин. Перигей– 228 км, апогей – 947 км. Спутник имел форму шара, был снабжен двумя антеннами и радиопередатчиком – маяком. Он совершил 1440 витков вокруг Земли, а 4 января 1958 г. вошел в плотные слои атмосферы и прекратил существование. За время его полета была получена новая информация о структуре верхних слоев атмосферы.

ПерваяпопытказапускаИСЗVangard-1 спомощьюракетыJpiter-C в США 6 декабря 1957 года закончилась аварией. Со второй попытки (1 февраля 1958 года) такой же ракетой на орбиту был выведен ИСЗ Explorer-1. Спутник имел форму сигары, весил 13 кг. На борту имел оборудование для регистрации микрометеоритов и уровня радиации. С его помощью были открыты радиационные пояса Земли. Спутник совершил 58 тысяч витков вокруг Земли и сгорел в атмосфере 31 марта 1970 года. Параметрыего орбиты: апогей– 2548 км, перигей 356 км. В активном режиме работал до 23 мая 1958 г. 7 августа 1959 г. в США был запущен «Explorer-6», который передал первое телевизионное изображение Земли из космоса. Первый ИСЗ для метеонаблюдений (Tiros-1) был запущен в США 1 апреля 1960 года. Спутник с аналогич-

26 ноября 1965 г. Франция запустила свой ИСЗ «Астерикс-1». 11 февраля 1970 г. вывела на орбиту ИСЗ «Осуми» Япония. 24 апреля того же года космической державой стал Китай (ИСЗ «Дунфанхун»). Англия запустила свой первый ИСЗ «Просперо» 28 октября 1971 г., а 18 июля 1980 г. – Индия (ИСЗ «Рохини»).

Началопилотируемыхполетоввкосмосположено12 апреля1961 года Юрием Алексеевичем Гагариным на корабле «Восток», а 6 августа того же года Герман Степанович Титов впервые произвел фотосъемку Земли с пилотируемого космического корабля «Восток». В отечественной космонавтике большое значение имели спутники серии «Космос». Первый запуск ИСЗ этой серии был произведен 16 марта 1962 года, а к 2007 году уже было запущено 2400 спутников различного назначения. Примерно каждые три года выводилось на орбиту по 250 ИСЗ серии «Космос». Значительнаячастьизнихбыласнабженаоборудованиемдля выполнения ресурсных исследований. С их помощью для всей территория СССР были получены космические фотоснимки высокого качества. Современная группировка Российских спутников насчитывает более 110 аппаратов различного назначения. Экономический эффект только от применения ИСЗ серии «Ресурс-0» составил около 1,2 млрд руб. в год, а спутников серий «Метеор» и «Электро» – 10 млрд руб. в год.

В настоящее время свои спутниковые системы, кроме России и США, имеют Франция, Германия, Европейский Союз, Индия, Китай, Япония, Израиль и другие страны.

1. ТЕХНИЧЕСКИЕ СРЕДСТВА И ТЕХНОЛОГИИ АЭРОКОСМОСЪЕМКИ

Технологии аэросъемок в развитии дистанционных исследований Земли предшествовали технологиям космических съемок. На начальных этапах развития дистанционного зондирования Земли из космоса в негоперешлимногиетехнологическиеприемыпроведенияаэросъемки, нопомереразвитиякосмическихисследованийвозникалииновыеприборы, а также новые технологии. При этом важнейшее значение имело становление и бурное развитие компьютерных технологий, направленных на обработку данных дистанционного зондирования.

1.1. Аэросъемка

Аэросъемка земной поверхности может выполняться в зависимости от поставленных задач с помощью самолетов и вертолетов, аэростатов и даже мотодельтапланов, а также беспилотных летательных аппаратов. Различают фотографическую, тепловую, радиолокационную и многозональную аэросъемки. Фотографическая съемка (аэрофотосъемка) для целей геологического картирования является наиболее важной, не только потому, что обладает наибольшей информативностью, но и потому, что за время ее проведения накоплено значительное количество аэрофотоматериалов различных масштабов и по различным регионам. Поэтому при проведении геолого-съемочных работ бывает экономическиболеецелесообразнымиспользоватьужеимеющиесявфондахаэрофотоматериалы, чем заказывать производство новой аэрофотосъемки.

Аэрофотосъемка местностииспользуетсявразличныхцелях, важнейшими из них являются составление и корректировка топографических карт, геологические исследования. Аэрофотосъемка может быть точечной, маршрутной и площадной. Точечная съемка выполняется при изученииточечныхобъектов. Маршрутнаясъемкапроводитсяпозаданной линии (линии берега, вдоль русла реки и т. п.). Площадная съемка выполняется в пределах заданных площадей, которые обычно определяются рамками топографических планшетов. Важным требованием к съемке является требование об обязательном перекрытии площадей соседних снимков. По линии маршрута – продольное перекрытие, оно должно составлять не менее 60 %, а между маршрутами (поперечное перекрытие) – не менее 30 %. Должна также выдерживаться заданная высота полета. Соблюдение этих параметров необходимо для возможности получения стереоэффекта (объемного изображения местности).

Аэрофотосъемка может быть плановой и перспективной. Плановая аэрофотосъемка, предназначенная для решения топографических задач, отличается повышенными требованиями к предельным отклонениям плоскостиснимкаотгоризонтальнойплоскости. Перспективныеснимки в комплекте с плановыми снимками весьма полезны при изучении геологического строения высокогорных территорий с крутыми склонами.

Для аэрофотосъемки в пределах территории России чаще всего используются самолеты Ан-2, Ан-28 ФК, Ан-30, Ту-134 СХ.

На протяжении более чем 60 лет (рекорд в «Книге Гиннеса»!) основным самолетом был (остается и сейчас) Ан-2 (его аэрофотосъемочная модификация Ан–2Ф). Он отличается высокой надежностью,

техническими параметрами, отвечающими условиям проведения аэрофотосъемки: возможность использования грунтовых аэродромов с длиной полосы разбега при взлете не более 200 м, а при посадке – 120 м; предельная высота полета 5200 м (при практическом потолке 4500 м); экономичный поршневой двигатель мощностью 1000 л. с.; скорость полетавпределахот150 до250 км/часидальностьполета(990 км), достаточная для выполнения съемки на больших площадях; большой объем фюзеляжа, позволяющий свободно размещать оборудование и экипаж из трех человек (вместе с оператором).

С 1974 г. используется специализированный самолет Ан-30. Его силовая установка состоит из двух турбовинтовых двигателей, мощностью по 2820 л. с., и дополнительного реактивного двигателя мощностью 500 л. с. Крейсерская скорость самолета – 435 км/час, максимальная высота полета – 8300 м. Дальность действия – 1240 км, длина разбега по взлетно-посадочной полосе с бетонным покрытием – 720 м, средний расход топлива – 855 кг/час. Максимальный взлетный вес самолета – 23 т. Вес фотооборудования – 650 кг. Экипаж (включая оператора) состоит из 7 человек. Аэрофотосъемка выполняется в масштабах от 1: 3 000 до 1: 200 000. В настоящее время в распоряжении военновоздушных сил (ВВС) осталось не более 10 машин этого типа. Сходными характеристиками обладают самолеты Ан-28 ФК.

Сельскохозяйственный самолет Ту-134 СХ разработан в 1984 г. На самолете установлена радиолокационная станция бокового обзора (РЛСБО). Специальный навигационный комплекс «Маяк» и система автоматического управления поддерживают заданный курс и осуществляют фотосъемку местности в соответствии с заданной программой. Пять бортовых фотоаппаратов позволяют проводить съемку в радиочастотном, видимом и инфракрасном диапазонах. В салоне – 9 рабочих мест соспециальнойаппаратурой, пультамиуправленияифотолабораторией (дляобработкифотоматериаловвполете). Заодинрейс(4,5 часа) может быть заснята территория 100 × 100 км (10 000 км² – примерная площадь двух топографических планшетов в масштабе 1: 200 000).

Аэрофотосъемкавыполняетсяспомощьюспециальныхшироко-

угольных фотоаппаратов , которые устанавливаются в люке фюзеляжа самолета. Для фиксации фотоаппарата в горизонтальной плоскости используются гиросистемы. Фотопленка помещается в специальных кассетах емкостью по 30 или 60 м. Ширина пленки, в зависимости от параметров фотоаппарата, составляет 18 см или 30 см. В комплект обо-

рудования входит также реле времени (часовой механизм), обеспечивающий заданную экспозицию съемки и режим перемотки пленки. В настоящее время чаще всего используются фотоаппараты с объективами серии «Уран»: с фокусными расстояниями 250 мм, углом поля зрения 54º, размером кадра 180 × 180 мм («Уран-9»), а также с фокусным расстоянием 750 мм и размером кадра 300 х 300 мм («Уран-16»).

В последние годы для производства аэрофотосъемки все чаще применяются цифровые съемочные системы. В целом цифровые ка-

меры более надежны в эксплуатации, существенно сокращают длительность технологического процесса, цифровые снимки свободны от «зернистости». Они обеспечивают возможность получения панхроматических, цветных и спектрозональных снимков в видимом и ближнем инфракрасном диапазонах. Интервал фотографирования составляет менее одной секунды, что позволяет выполнять крупномасштабную съемку с продольным перекрытием до 80–90 %. Среди общих свойств цифровых аэрофотоаппаратов различных систем следует указать на использование приемников излучения матричного или линейного типа; синтезированный кадр (для широкоформатных камер) – результирующий кадр системы формируется из набора субкадров, соответствующих матриц или линейных приемников; GPS/INS поддержка – пространственные и угловые координаты систем координат аэрофотоаппаратов (элементы внешнего ориентирования) определяются с использованием средств инерциальной навигации и систем спутникового геопозиционирования GPS или ГЛОНАС.

Радарная (радиолокационная) аэросъемка выполняется с помо-

щью радиолокационных систем бокового обзора (РЛСБО), установленных на борту самолета. От источника микроволнового излучения сигнал направляется к земной поверхности, отражается от нее и возвращается на приемную антенну. С помощью специальных программ запись отраженных сигналов преобразуется в фотографическое изображение земной поверхности.

1.2. Космическая съемка

Космическаясъемказемнойповерхностивпоследниегодыпревратилась в самостоятельную ветвь дистанционного зондирования Земли. Системы космического зондирования включают несколько важнейших элементов: транспортные средства доставки необходимого оборудования на околоземную орбиту, космические платформы – носители

средств наблюдения, сенсоры (датчики), средства передачи информации и наземные центры приема, обработки этой информации, доставки ее потребителю.

Основными транспортными средствами доставки необходимо-

го оборудования на околоземные орбиты являются ракеты различного класса. В СССР наиболее ранними из них были трехступенчатые ракеты легкого класса «Восток». С их помощью осуществлялись пилотируемые полеты, запускались искусственные спутники Земли (ИСЗ) серии «Космос», лунные станции. Кроме того, в этом классе широко применяются многие носители, снятые с вооружения, в частности ракета «Зенит», предназначенная также в качестве элемента разгонного блока системы «Энергия – Буран».

Трехступенчатая ракета среднего класса «Союз», грузоподъемностью около 7 тонн с успехом используется, равно как и созданная на ее основе четырехступенчатая ракета «Молния», для запусков ИСЗ «Прогноз», «Молния».

Созданная почти полвека назад многоступенчатая ракета тяжелого класса «Протон» грузоподъемностью более 20 тонн использовалась и используется сейчас в различных целях: для исследования Луны, планет Солнечной системы, для выведения на околоземную орбиту обитаемых станций «Салют», «Мир», на геостационарные орбиты спутников «Горизонт», «Радуга», «Экран» и др.

В мае 1987 года в связи с разработкой программы по созданию многоразового космического корабля «Энергия – Буран» была введена

в эксплуатацию двухступенчатая ракета сверхтяжелого класса «Энергия» со стартовой массой более 2000 тонн и грузоподъемностью около 200 тонн. Помимо применения этой ракеты для выведения на околоземную орбиту многоразовых кораблей, она может быть использована и для доставки других грузов. Это выгодно отличает систему «Энергия – Буран» от похожей по назначению американской системы «Space Shuttle».

Наиболее часто применяемыми зарубежными ракетами являются ракеты серии «Delta» (США) и «Arian» (Франция).

Кроме ИСЗ для ресурсных исследований в России использовались орбитальные станции («Салют-4, 5, 6», «Мир»), а также пилотируемые корабли серии «Союз».

В СШАважнаярольвкосмическихисследованияхотводиласьпроекту «Space Shuttle». Проект изначально разрабатывался в военных це-

Дистанционное зондирование Земли (ДЗЗ) - получение информации о поверхности Земли и объектах на ней, атмосфере, океане, верхнем слое земной коры бесконтактными методами, при которых регистрирующий прибор удален от объекта исследований на значительное расстояние. Общей физической основой дистанционного зондирования является функциональная зависимость между зарегистрированными параметрами собственного или отраженного излучения объекта и его биогеофизическими характеристиками и пространственным положением.

В современном облике дистанционного зондирования выделяются два взаимосвязанных направления - естественно-научное (дистанционные исследования) и инженерно-техническое (дистанционные методы), что нашло отражение в широко распространенных англоязычных терминах remote sensing и remote sensing techniques. Понимание сущности дистанционного зондирования неоднозначно. Аэрокосмическая школа Московского университета им. М.В.Ломоносова в качестве предмета дистанционного зондирования как научной дисциплины рассматривает пространственно-временные свойства и отношения природных и социально-экономических объектов, проявляющиеся прямо или косвенно в собственном или отраженном излучении, дистанционно регистрируемом из космоса или с воздуха в виде двумерного изображения - снимка. Эта существенная часть дистанционного зондирования названа аэрокосмическим зондированием (АКЗ) , что подчеркивает его преемственность с традиционными аэрометодами. Метод аэрокосмического зондирования основан на использовании снимков, которые, как свидетельствует практика, представляют наибольшие возможности для комплексного изучения земной поверхности.

Во всех странах действенным стимулом развития аэрокосмического зондирования служат запросы военных ведомств. С внедрением космических методов и современных цифровых технологий аэрокосмическое зондирование приобретает все более важное экономическое значение и становится обязательным элементом высшего образования в природоведческих вузах, превращается в мощное средство изучения Земли от локальных исследований отдельных компонентов до глобального изучения планеты в целом. Поэтому при изложении различных аспектов аэрокосмического зондирования целесообразно рассматривать его как метод исследований, результативно применяемый во всех науках о Земле, и, прежде всего в географии.

История и современное состояние аэрокосмического зондирования

Дистанционные методы применяются в исследованиях Земли очень давно. Вначале использовались рисованные снимки , которые фиксировали пространственное расположение изучаемых объектов. С изобретением фотографии возникла наземная фототеодолитная съемка, при которой по перспективным фотоснимкам составляли карты горных районов. Развитие авиации обеспечило получение аэрофотоснимков с изображением местности сверху, в плане. Это вооружило науки о Земле мощным средством исследований — аэрометодами.

История развития аэрокосмических методов свидетельствует о том, что новые достижения науки и техники сразу же используются для совершенствования технологий получения снимков. Так произошло в середине XX в., когда такие новшества, как компьютеры, космические аппараты, радиоэлектронные съемочные системы, совершили революционные преобразования в традиционных аэрофотометодах - зародилось аэрокосмическое зондирование. Космические снимки предоставили геоинформацию для решения проблем регионального и глобального уровней.

В настоящее время отчетливо проявляются следующие тенденции поступательного развития аэрокосмического зондирования.

  • Космические снимки, оперативно размещаемые в Интернете, становятся наиболее востребованной видеоинформацией о местности как для специалистов-профессионалов, так и для широких слоев населения.
  • Разрешение и метрические свойства космических снимков открытого доступа быстро повышаются. Получают распространение орбитальные снимки сверхвысокого разрешения - метрового и даже дециметрового, которые успешно конкурируют с аэроснимками.
  • Аналоговые фотографические снимки и традиционные технологии их обработки утрачивают свое прежнее монопольное значение. Основным обрабатывающим прибором стал компьютер, оснащенный специализированным программным обеспечением и периферией.
  • Развитие всепогодной радиолокации превращает ее в прогрессивный метод получения метрически точной пространственной геоинформации, который начинает эффективно комплексироваться с оптическими технологиями аэрокосмического зондирования.
  • Быстро формируется рынок разнообразной продукции аэрокосмического зондирования Земли. Неуклонно увеличивается число коммерческих космических аппаратов, функционирующих на орбитах, особенно зарубежных. Наибольшее применение находят снимки, получаемые ресурсными спутниковыми системами Landsat (США), SPOT (Франция), IRS (Индия), картографическими спутниками ALOS (Япония), Cartosat (Индия), спутниками сверхвысокого разрешения Ikonos, QiuckBird, GeoEye (США), в том числе радиолокационными TerraSAR-X и TanDEM-X (Германия), выполняющими тандемную интерферометрическую съемку. Успешно эксплуатируется система спутников космического мониторинга RapidEye (Германия).

Принципиальная технологическая схема дистанционных исследований Земли

Рис. 1

На рис.1 в обобщенном виде представлена принципиальная схема выполнения аэрокосмических исследований. Она включает основные технологические этапы: получение снимка объекта исследования и дальнейшую работу со снимками - их дешифрирование и фотограмметрическую обработку, а также конечную цель исследований - составленную по снимкам карту, геоинформационную систему, разработанный прогноз. Поскольку получить необходимые характеристики изучаемого объекта только по снимкам без каких-либо натурных определений, без обращения к «земной правде» в большинстве случаев невозможно, необходимо их эталонирование. Важным элементом исследований по снимкам является также оценка достоверности и точности полученных результатов. Для этого приходится привлекать другую информацию и обрабатывать ее иными методами, что требует дополнительных затрат.

Снимок - основное понятие аэрокосмического зондирования

Аэрокосмические снимки — основной результат аэрокосмических съемок, для выполнения которых используют разнообразные авиационные и космические носители (рис. 2). Аэрокосмические съемки делят на пассивные , которые предусматривают регистрацию отраженного солнечного или собственного излучения Земли, и активные , при которых выполняют регистрацию отраженного искусственного излучения.

Рис. 2

Аэрокосмический снимок — это двумерное изображение реальных объектов, которое получено по определенным геометрическим и радиометрическим (фотометрическим) законам путем дистанционной регистрации яркости объектов и предназначено для исследования видимых и скрытых объектов, явлений и процессов окружающего мира, а также для определения их пространственного положения.

Диапазон масштабов современных аэрокосмических снимков огромен: он может меняться от 1:1000 до 1:100 000 000, т. е. в сто тысяч раз. При этом наиболее распространенные масштабы аэрофотоснимков лежат в пределах 1:10 000—1:50 000, а космических — 1:200 000—1:10 000 000. Все аэрокосмические снимки принято делить на аналоговые (обычно фотографические) и цифровые (электронные). Изображение цифровых снимков образовано из отдельных одинаковых элементов — пикселов (от англ. picture element рixel ); яркость каждого пиксела характеризуется одним числом.

Аэрокосмические снимки как информационные модели местности характеризуются рядом свойств, среди которых выделяют изобразительные, радиометрические (фотометрические) и геометрические. Изобразительные свойства характеризуют способность снимков воспроизводить мелкие детали, цвета и тоновые градации объектов, радиометрические свидетельствуют о точности количественной регистрации снимком яркостей объектов, геометрические характеризуют возможность определения по снимкам размеров, длин и площадей объектов и их взаимного положения.

Важными показателями снимка служат охват и пространственное разрешение . Обычно для исследований требуются снимки большого охвата и высокого разрешения. Однако удовлетворить эти противоречивые требования в одном снимке не удается. Обычно чем больше охват получаемых снимков, тем ниже их разрешение. Поэтому приходится идти на компромиссные решения либо выполнять одновременно съемку несколькими системами с различными параметрами.

Технологии получения и основные типы аэрокосмических снимков

Аэрокосмическую съемку ведут в окнах прозрачности атмосферы (рис.3), используя излучение в разных спектральных диапазонах - световом (видимом, ближнем и среднем инфракрасном), тепловом инфракрасном и радиодиапазоне.

Рис. 3

В каждом из них применяют разные технологии получения изображения и в зависимости от этого выделяются несколько типов снимков (рис.4).

Рис.4

Снимки в световом диапазоне делятся на фотографические и сканерные, которые в свою очередь подразделяются на полученные оптико-механическим сканированием (ОМ-сканерные) и оптико-электронным с использованием линейных приемников излучения на основе приборов с зарядовой связью (ПЗС-сканерные). На таких снимках отображаются оптические характеристики объектов - их яркость, спектральная яркость. Применяя многозональный принцип съемки, получают в этом диапазоне многозональные снимки , а при большом числе съемочных зон - гиперспектральные , использование которых основано на спектральной отражательной способности объектов съемки, их спектральной яркости .

Проводя съемку с использованием приемников теплового излучения - тепловую съемку , - получают тепловые инфракрасные снимки. Съемку в радиодиапазоне ведут, применяя как пассивные, так и активные методы, и в зависимости от этого снимки делятся на микроволновые радиометрические, получаемые при регистрации собственного излучения исследуемых объектов, и радиолокационные снимки, получаемые при регистрации отраженного радиоизлучения, посылаемого с носителя - радиолокационной съемке .

Методы получения информации по снимкам: дешифрирование и фотограмметрические измерения

Необходимая для исследований информация (предметно-содержательная и геометрическая) извлекается из снимков двумя основными методами, это дешифрирование и фотограмметрические измерения

Дешифрирование, которое должно дать ответ на основной вопрос - что изображено на снимке, позволяет получать предметную, тематическую (в основном качественную) информацию об изучаемом объекте или процессе, его связях с окружающими объектами. В визуальном дешифрировании обычно выделяют чтение снимков и их интерпретацию (толкование). Умение читать снимки базируется на знании дешифровочных признаков объектов и изобразительных свойств снимков. Глубина же интерпретационного дешифрирования существенно зависит от уровня подготовки исполнителя. Чем лучше знает дешифровщик предмет своего исследования, тем полнее и достовернее информация, извлекаемая из снимка.

Фотограмметрическая обработка (измерения) призвана дать ответ на вопрос - где находится изучаемый объект и каковы его геометрические характеристики : размер, форма. Для этого выполняется трансформирование снимков, их изображение приводится в определенную картографическую проекцию. Это позволяет определять по снимкам положение объектов и их изменение во времени.

Современные компьютерные технологии получения информации по снимкам позволяют решать следующие группы задач:

  • визуализация цифровых снимков;
  • геометрические и яркостные преобразования снимков, включая их коррекцию;
  • конструирование новых производных изображений по первичным снимкам;
  • определение количественных характеристик объектов;
  • компьютерное дешифрирование снимков (классификация).

Для выполнения компьютерного дешифрирования применяют наиболее распространенный подход, основанный на спектральных признаках, в качестве которых служит набор спектральных яркостей, зарегистрированных многозональным снимком. Формальная задача компьютерного дешифрирования снимков сводится к классификации — последовательной «сортировке» всех пикселов цифрового снимка на несколько групп. Для этого предложены алгоритмы классификации двух видов — с обучением и без обучения, или кластеризации (от англ. cluster — скопление, группа). При классификации с обучением пикселы многозонального снимка группируются на основе сравнения их яркостей в каждой спектральной зоне с эталонными значениями. При кластеризации же все пикселы разделяют на группы-кластеры по какому-либо формальному признаку, не прибегая к обучающим данным. Затем кластеры, полученные в результате автоматической группировки пикселов, дешифровщик относит к тем или иным объектам. Достоверность компьютерного дешифрирования формально характеризуется отношением числа правильно классифицируемых пикселов к их общему числу.

Вычислительные алгоритмы, основанные на спектральных признаках отдельных пикселов, обеспечивают надежное решение только самых простых классификационных задач; они рационально включаются в качестве элементов в сложный процесс визуального дешифрирования, которое пока остается основным методом извлечения природной и социально-экономической информации из аэрокосмических снимков.

Применение аэрокосмического зондирования в картографировании и исследованиях Земли

Аэрокосмические снимки применяются во всех направлениях изучения Земли, но интенсивность их использования и результативность применения в разных областях исследований различны. Они чрезвычайно важны в исследованиях литосферы, показывая раздробленность геологического фундамента линейными разломами и кольцевыми структурами и облегчая поиски месторождений полезных ископаемых; в исследованиях атмосферы, где снимки дали основу метеорологических прогнозов; благодаря снимкам из космоса открыта вихревая структура океана, зафиксировано состояние растительного покрова Земли на рубеже веков и его изменения в последние десятилетия. Пока космические снимки значительно меньше применяются при социально-экономических исследованиях. Различаются и типы задач, решаемых по снимкам в разных предметных областях. Так, решение инвентаризационных задач реализуется при изучении природных ресурсов, например при картографировании почв, растительности, поскольку снимки наиболее полно отображают сложную пространственную структуру почвенно-растительного покрова. Оценочные задачи, оперативная оценка состояния экосистем выполняются в рамках исследований биопродуктивности океанов, ледового покрова морей, контроля за пожароопасной ситуацией в лесах. Прогностические задачи, использование снимков для моделирования и прогнозирования наиболее развито в метеорологии, где их анализ является основой прогнозов погоды, в гидрологии — для прогноза талого стока рек, паводков и наводнений. Начинаются исследования по прогнозированию сейсмической активности, землетрясений на основе анализа состояния литосферы и верхней атмосферы.

При работе со снимками используются все виды их обработки, но наиболее широко развито дешифрирование снимков, прежде всего визуальное, которое теперь подкрепляется возможностями компьютерных улучшающих преобразований и классификации изучаемых объектов по снимкам. Большое развитие получило создание по снимкам различных производных изображений на основе спектральных индексов. С выполнением гиперспектральной съемки стали создаваться десятки видов таких индексных изображений. Разработка методов интерферометрической обработки материалов радиолокационной съемк и открыла возможность высокоточных определений смещений земной поверхности. Переход к цифровым методам съемки, развитие цифровой стереоскопической съемки и создание цифровых фотограмметрических систем расширили возможности фотограмметрической обработки космических снимков, используемой главным образом для создания и обновления топографических карт.

Хотя одно из основных достоинств космических снимков заключается в совместном отображении всех компонентов земной оболочки, обеспечивающем комплексность исследований, тем не менее применение снимков в различных областях изучения Земли шло пока разрозненно, так как везде требовалась углубленная разработка собственных методик. Идея комплексных исследований наиболее полно реализована при выполнении в нашей стране программы комплексной картографической инвентаризации природных ресурсов, когда по снимкам создавались серии взаимоувязанных и взаимосогласованных карт. Осознание на рубеже веков экологических проблем, нависших над человечеством, и парадигма изучения Земли как системы вновь активизировали комплексные межотраслевые исследования.

Анализ применения снимков в разных направлениях исследований четко показывает, что при всем многообразии решаемых задач магистральный путь практического использования аэрокосмических снимков лежит через карту, которая имеет самостоятельное значение и, кроме того, служит базовой основой ГИС.

Рекомендуемая литература

1. Книжников Ю.Ф., Кравцова В.И., Тутубалина О.В . Аэрокосмические методы географических исследований - М.:Изд.Центр Академия. 2004. 336 с.

3. Краснопевцев Б.В. Фотограмметрия. - М.:МИИГАиК, 2008. - 160 с.

2. Лабутина И.А. Дешифрирование аэрокосмических снимков. - М.:Аспект Пресс. 2004. -184 с.

4. Смирнов Л.Е. Аэрокосмические методы географических исследований. - СПб.:Изд-во С-Петербургского ун-та, 2005. - 348 с.

5. Рис. Г.У. Основы дистанционного зондирования. -М.: Техносфера, 2006, 336 с.

6. Jensen J.R. Remote sensing of the environment: an Earth resource perspective. — Prentice Hall, 2000. — 544 p.

Атласы аэрокосмических снимков:

8. Дешифрирование многозональных аэрокосмических снимков. Методика и результаты. — М.: Наука; Берлин: Академи-Ферлаг. — Т. 1. — 1982. — 84 с.;

9. Дешифрирование многозональных аэрокосмических снимков. Система «Фрагмент». Методика и результаты. — М.: Наука; Берлин: Академи-Ферлаг. Т. 2. — 1988. — 124 с.

10. Космические методы геоэкологии. — М.: Изд-во Моск. ун-та, 1998. — 104 с.

Дистанционное зондирование Земли (ДЗЗ) -получение информации о поверхности Земли и объектах на ней, атмосфере, океане, верхнем слое земной коры бесконтактными методами, при которых регистрирующий прибор удален от объекта исследований на значительное расстояние . Общей физической основой дистанционного зондирования является функциональная зависимость между зарегистрированными параметрами собственного или отраженного излучения объекта, его биогеофизическими характеристиками и пространственным положением. Суть метода заключается в интерпретации результатов измерения электромагнитного излучения, которое отражается либо излучается объектом и регистрируется в некоторой удаленной от него точке пространства.

Дистанционные методы применяются в исследованиях Земли очень давно. Вначале использовались рисованные снимки, которые фиксировали пространственное расположение изучаемых объектов. С изобретением фотографии возникла наземная фототеодолитная съемка, при которой по перспективным фотоснимкам составляли карты горных районов. Развитие авиации обеспечило получение аэрофотоснимков с изображением местности сверху, в плане. Это вооружило науки о Земле мощным средством исследований - аэрометодами.

Понятие дистанционного зондирования появилось в XIX веке вслед за изобретением фотографии, а одной из первых областей, в которых стали применять этот метод, стала астрономия. Впоследствии, дистанционное зондирование начали использовать в военной области для сбора информации о противнике и принятия стратегических решений. Во время Гражданской войны в США фотоснимки, полученные с помощью неуправляемых летательных аппаратов, служили для наблюдения за перемещением войск, подвозом припасов, ходом фортификационных работ и для оценки эффекта артиллерийских обстрелов. В результате исследований, которые финансировались различными государствами, были разработаны технологии, позволившие создать сенсоры сначала для военных целей, а затем и для гражданского применения этого метода. После Второй мировой войны метод дистанционного зондирования стали использовать для наблюдения за окружающей средой и оценки развития территорий, а также в гражданской картографии. В 60-х годах XX века, с появлением космических ракет и спутников, дистанционное зондирование вышло в космос.

Новая эра дистанционного зондирования связана с пилотируемыми космическими полетами, разведывательными, метеорологическими и ресурсными спутниками.

Возможности ДЗ в военной области значительно возросли после 1960 года в результате запуска разведывательных спутников в рамках программ CORONA, ARGON, LANYARD, целью которых было получение фотоснимков с низких орбит. Вскоре были получены стереопары снимков с разрешением 2 метра. Первые спутники работали на орбите от семи до восьми дней, но уже следующие поколения этих аппаратов были способны поставлять данные в течение нескольких месяцев.

В результате осуществления программ пилотируемых полетов, которые были начаты в США в 1961 году, человек впервые высадился на поверхность Луны (1969 г.). Следует отметить программу Mercury, в рамках которой были получены снимки Земли, систематический сбор данных дистанционного зондирования во время проекта Gemini (1965-1966 гг.), программу Apollo (1968-1975 гг.), в ходе которой велось дистанционное зондирование земной поверхности (ДЗЗ) и состоялась высадка человека на Луну, запуск космической станции Skylab (1973-1974 гг.), на которой проводились исследования земных ресурсов, полеты космических кораблей многоразового использования, которые начались в 1981 году, а также получение многозональных снимков с разрешением 100 метров в видимом и близком инфракрасном диапазоне с использованием девяти спектральных каналов.

В Советском Союзе, а затем в России космические программы развивались параллельно космическим программам США. Полет Юрия Гагарина 12 апреля 1961 года, ставший первым полетом человека в космос, запуски космических кораблей «Восток» (1961-1963 гг.), «Восход» (1964-1965 гг.) и «Союз», работа на орбите космических станций «Салют» (впервые 19 апреля 1971 года).

Первый метеорологический спутник был запущен в США 1 апреля 1960 года. Он использовался для прогноза погоды, наблюдения за перемещением циклонов и других подобных задач. Первым среди спутников, которые применялись для регулярной съемки больших участков земной поверхности, стал TIROS-1 (Television and Infrared Observation Satellite).

Первый специализированный спутник был запущен в 1972 году. Он назывался ERTS-1 (Earth Resources Technology Satellite) и использовался, в основном, для целей сельского хозяйства. В настоящее время спутники этой серии носят название Landsat.

Они предназначены для регулярной многозональной съемки территорий со средним разрешением. Позже, в 1978 году, был запущен первый спутник со сканирующей системой SEASAT, но он передавал данные всего три месяца. Первый французский спутник серии SPOT, с помощью которого можно было получать стереопары снимков, был выведен на орбиту в 1985 году. Запуск первого индийского спутника дистанционного зондирования, названного IRS (Indian Remote Sensing), состоялся в 1988 году. Япония также вывела на орбиту свои спутники JERS MOS.

Начиная с 1975 года, Китай периодически запускал собственные спутники, но полученные ими данные до сих пор находятся в закрытом доступе. Европейский космический консорциум вывел на орбиту свои радарные спутники ERS в 1991 и 1995 годах, а Канада-спутник RADARSAT в 1995 году.

История развития аэрокосмических методов свидетельствует о том, что новые достижения науки и техники сразу же используются для совершенствования технологий получения снимков. Так произошло в середине XX в., когда такие новшества, как компьютеры, космические аппараты, радиоэлектронные съемочные системы, совершили революционные преобразования в традиционных аэрофотометодах - зародилось аэрокосмическое зондирование. Космические снимки предоставили геоинформацию для решения проблем регионального и глобального уровней.

В настоящее время отчетливо проявляются следующие тенденции поступательного развития аэрокосмического зондирования.

  • Космические снимки, оперативно размещаемые в Интернете, становятся наиболее востребованной видеоинформацией о местности как для специалистов-профессионалов, так и для широких слоев населения.
  • Разрешение и метрические свойства космических снимков открытого доступа быстро повышаются. Получают распространение орбитальные снимки сверхвысокого разрешения - метрового и даже дециметрового, которые успешно конкурируют с аэроснимками.
  • Аналоговые фотографические снимки и традиционные технологии их обработки утрачивают свое прежнее монопольное значение. Основным обрабатывающим прибором стал компьютер, оснащенный специализированным программным обеспечением и периферией.
  • Развитие всепогодной радиолокации превращает ее в прогрессивный метод получения метрически точной пространственной геоинформации, который начинает эффективно комплексироваться с оптическими технологиями аэрокосмического зондирования.
  • Быстро формируется рынок разнообразной продукции аэрокосмического зондирования Земли. Неуклонно увеличивается число коммерческих космических аппаратов, функционирующих на орбитах, особенно зарубежных. Наибольшее применение находят снимки, получаемые ресурсными спутниковыми системами Landsat (США), SPOT (Франция), IRS (Индия), картографическими спутниками ALOS (Япония), Cartosat (Индия), спутниками сверхвысокого разрешения Ikonos, QiuckBird, GeoEye (США), в том числе радиолокационными TerraSAR-X и TanDEM-X (Германия), выполняющими тандемную интерферометрическую съемку. Успешно эксплуатируется система спутников космического мониторинга RapidEye (Германия).

Аэрокосмический снимок - это двумерное изображение реальных объектов, которое получено по определенным геометрическим и радиометрическим (фотометрическим) законам путем дистанционной регистрации яркости объектов и предназначено для исследования видимых и скрытых объектов, явлений и процессов окружающего мира, а также для определения их пространственного положения.

Диапазон масштабов современных аэрокосмических снимков огромен: он может меняться от 1:1000 до 1:100 000 000, т.е. в сто тысяч раз. При этом наиболее распространенные масштабы аэрофотоснимков лежат в пределах 1:10 000 - 1:50 000, а космических - 1:200 000 - 1:10 000 000. Все аэрокосмические снимки принято делить на аналоговые (обычно фотографические) и цифровые (электронные). Изображение цифровых снимков образовано из отдельных одинаковых элементов - пикселей (от англ. Picture element-рixel); яркость каждого пиксела характеризуется одним числом.

Аэрокосмические снимки как информационные модели местности характеризуются рядом свойств, среди которых выделяют изобразительные, радиометрические (фотометрические) и геометрические. Изобразительные свойства характеризуют способность снимков воспроизводить мелкие детали, цвета и тоновые градации объектов, радиометрические свидетельствуют о точности количественной регистрации снимком яркостей объектов, геометрические характеризуют возможность определения по снимкам размеров, длин и площадей объектов и их взаимного положения.

Оптимальный способ использования данных наблюдения поверхности Земли со спутников заключается в том, чтобы анализировать их совместно с информацией из других источников.

Получение снимков с перекрытием из нескольких последовательных точек орбиты (стереосъёмка) позволяет получить более точное представление о трехмерных объектах и повысить отношение сигнал/шум.

Использование многозональных снимков основано на уникальности тоновых характеристик различных объектов. Объединение яркостных данных из снимков в различных спектральных диапазонах позволяет безошибочно выделять определенные пространственные структуры. Съемку с использованием большого числа (более 10) узких съемочных зон называют гиперспектральной. При гиперспектральной съемке увеличивается возможность выделения объектов, характеризующихся наличием полос поглощения, что характерно, например, для загрязнений. Многозональная и гиперпектральная съемки позволяют более эффективно использовать различия в спектральной яркости объектов съемки для их дешифрирования.

К этому виду снимков можно отнести также радиолокационные снимки, получаемые как при регистрации отраженных радиоволн разной длины, так и при разной их поляризации.

Многовременная съемка - это плановая съемка в заранее определенные даты, которая позволяет выполнять сравнительный анализ снимков тех объектов, характеристики которых изменяются во времени.

Многоуровневая съемка - съемка с различными уровнями дискретизации используется для получения более подробной информации об изучаемой территории.

Как правило, весь процесс сбора данных подразделяют на три уровня: космическая съемка, аэросъемка и наземные исследования.

Снимки, полученные методом многополяризационной съёмки, используют для проведения границ между объектами на основе различий в поляризационных свойствах отраженного излучения. Так, например, отраженное излучение от водной поверхности обычно более сильно поляризовано, чем отраженное излучение от растительного покрова.

Комбинированный метод заключается в использовании многовременной, многозональной и многополяризационной съемок.

Технологии дистанционного зондирования Земли (ДЗЗ) из космоса — незаменимый инструмент изучения и постоянного мониторинга нашей планеты, помогающий эффективно использовать и управлять ее ресурсами. Современные технологии ДЗЗ находят применение практически во всех сферах нашей жизни.

Сегодня разработанные предприятиями Роскосмоса технологии и методики использования данных ДЗЗ позволяют предложить уникальные решения для обеспечения безопасности, повышения эффективности разведки и добычи природных ресурсов, внедрения новейших практик в сельское хозяйство, предупреждения чрезвычайных ситуаций и устранении их последствий, охраны окружающей среды и контроля над изменением климата.

Изображения, передаваемые спутниками дистанционного зондирования Земли, находят применение во многих отраслях — сельском хозяйстве, геологических и гидрологических исследованиях, лесоводстве, охране окружающей среды, планировке территорий, образовательных, разведывательных и военных целях. Космические системы ДЗЗ позволяют за короткое время получить необходимые данные с больших площадей (в том числе труднодоступных и опасных участков).

В 2013 году Роскосмос присоединился к деятельности Международной Хартии по космосу и крупным катастрофам. Для обеспечения его участия в деятельности Международной Хартии был создан специализированный Центр Роскосмоса по взаимодействию с Хартией и МЧС России.

Головной организацией Госкорпорации «Роскосмос» по организации приема, обработки и распространения информации дистанционного зондирования Земли является Научный центр оперативного мониторинга Земли (НЦ ОМЗ) холдинга «Российские космические системы» (входит в Госкорпорацию «Роскосмос»). НЦ ОМЗ выполняет функции наземного комплекса планирования, приема, обработки и распространения космической информации с российских космических аппаратов ДЗЗ.

Сферы применения данных дистанционного зондирования Земли

  • Обновление топографических карт
  • Обновление навигационных, дорожных и других специальных карт
  • Прогноз и контроль развития наводнений, оценка ущерба
  • Мониторинг сельского хозяйства
  • Контроль гидротехнических сооружений на каскадах водохранилищ
  • Реальное местонахождение морских судов
  • Отслеживание динамики и состояния рубок леса
  • Природоохранный мониторинг
  • Оценка ущерба от лесных пожаров
  • Соблюдение лицензионных соглашений при освоении месторождений полезных ископаемых
  • Мониторинг разливов нефти и движения нефтяного пятна
  • Наблюдение за ледовой обстановкой
  • Контроль несанкционированного строительства
  • Прогнозы погоды и мониторинг опасных природных явлений
  • Мониторинг чрезвычайных ситуаций, связанных с природными и техногенными воздействиями
  • Планирование аварийно-спасательных работ в районах стихийных бедствий и антропогенных катастроф
  • Мониторинг экосистем и антропогенных объектов (расширение городов, промзон, транспортных магистралей, пересыхающих водоемов и т.п.)
  • Мониторинг строительства объектов дорожно-транспортной инфраструктуры

Нормативные документы, определяющие порядок получения и использования геопространственной информации

  • «Концепция развития российской космической системы дистанционного зондирования Земли на период до 2025 года »
  • Постановление Правительства РФ № 370 от 10 июня 2005 г. с изменениями от 28.02.2015 № 182 «Об утверждении Положения о планировании космических съемок, приеме, обработке и распространении данных дистанционного зондирования Земли высокого линейного разрешения на местности с космических аппаратов типа «Ресурс-ДК »
  • Постановление Правительства РФ № 326 от 28 мая 2007 г. «О порядке получения, использования и предоставления геопространственной информации »
  • Поручение Президента РФ № Пр-619ГС от 13 апреля 2007 г. и поручение Правительства РФ № СИ-ИП-1951 от 24 апреля 2007г. «О разработке и реализации комплекса мер по формированию в РФ системы федеральных, региональных и иных операторов услуг, оказываемых с использованием данных ДЗЗ из космоса »
  • План реализации этих поручений, утвержденный Руководителем Роскосмоса 11 мая 2007 г. «О реализации комплекса мер по формированию в РФ системы федеральных, региональных и иных операторов услуг, оказываемых с использованием данных ДЗЗ из космоса »
  • Государственная программа Российской Федерации «Космическая деятельность России на 2013 — 2020 годы » утверждена постановлением Правительства Российской Федерации от 15 апреля 2014 г. № 306
  • Основы государственной политики Российской Федерации в области космической деятельности на период до 2030 года и дальнейшую перспективу, утвержденных Президентом Российской Федерации от 19 апреля 2013 г. № Пр-906
  • Федеральный закон от 27 июля 2006 г. N 149-ФЗ «Об информации, информационных технологиях и о защите информации » с изменениями и дополнениями от: 27 июля 2010 г., 6 апреля, 21 июля 2011 г., 28 июля 2012 г., 5 апреля, 7 июня, 2 июля, 28 декабря 2013 г., 5 мая 2014 г.

Федеральным, региональным и местным органам исполнительной власти для обеспечения государственных нужд материалы космической съёмки первого уровня стандартной обработки (космические изображения, прошедшие радиометрическую и геометрическую коррекцию) предоставляются на безвозмездной основе. В случае необходимости получения указанными органами материалов космической съемки высших уровней стандартной обработки, за услуги по их изготовлению взимается плата в соответствии с утверждённым прейскурантом цен.



Похожие публикации