Округление числа до необходимого десятичного разряда.

), записанное с меньшим количеством значащих цифр. Модуль разности между заменяемым и заменяющим числом называется ошибкой округления .

Округление применяется для представления значений и результатов вычислений с тем количеством знаков, которое соответствует реальной точности измерений или вычислений, либо той точности, которая требуется в конкретном приложении. Округление в ручных расчётах также может использоваться для упрощения вычислений в тех случаях, когда погрешность, вносимая за счёт ошибки округления, не выходит за границы допустимой погрешности расчёта.

Общий порядок округления и терминология

Методы

В разных сферах могут применяться различные методы округления. Во всех этих методах «лишние» знаки обнуляют (отбрасывают), а предшествующий им знак корректируется по какому-либо правилу.

  • Округление к ближайшему целому (англ. rounding ) - наиболее часто используемое округление, при котором число округляется до целого, модуль разности с которым у этого числа минимален. В общем случае, когда число в десятичной системе округляют до N-го знака, правило может быть сформулировано следующим образом:
    • если N+1 знак < 9 , то N-й знак сохраняют, а N+1 и все последующие обнуляют;
    • если N+1 знак ≥ 5 , то N-й знак увеличивают на единицу, а N+1 и все последующие обнуляют;
    Например: 11,9 → 12; −0,9 → −1; −1,1 → −1; 2,5 → 3. Максимальная дополнительная абсолютная погрешность, вносимая при таком округлении (погрешность округления), составляет ±0,5 последнего сохраняемого разряда.
  • Округление к меньшему по модулю (округление к нулю, целое англ. fix, truncate, integer ) - самое «простое» округление, поскольку после обнуления «лишних» знаков предшествующий знак сохраняют, то есть технически оно состоит в отбрасывании лишних знаков. Например, 11,9 → 11; −0,9 → 0; −1,1 → −1). При таком округлении может вноситься погрешность в пределах единицы последнего сохраняемого разряда, причём в положительной части числовой оси погрешность всегда отрицательна, а в отрицательной - положительна.
  • Округление к большему (округление к +∞, округление вверх, англ. ceiling - досл. «потолок») - если обнуляемые знаки не равны нулю, предшествующий знак увеличивают на единицу, если число положительное, или сохраняют, если число отрицательное. В экономическом жаргоне - округление в пользу продавца , кредитора (лица, получающего деньги). В частности, 2,6 → 3, −2,6 → −2. Погрешность округления - в пределах +1 последнего сохраняемого разряда.
  • Округление к меньшему (округление к −∞, округление вниз, англ. floor - досл. «пол») - если обнуляемые знаки не равны нулю, предшествующий знак сохраняют, если число положительное, или увеличивают на единицу, если число отрицательное. В экономическом жаргоне - округление в пользу покупателя , дебитора (лица, отдающего деньги). Здесь 2,6 → 2, −2,6 → −3. Погрешность округления - в пределах −1 последнего сохраняемого разряда.
  • Округление к большему по модулю (округление к бесконечности, округление от нуля) - относительно редко используемая форма округления. Если обнуляемые знаки не равны нулю, предшествующий знак увеличивают на единицу. Погрешность округления составляет +1 последнего разряда для положительных и −1 последнего разряда для отрицательных чисел.

Варианты округления 0,5 к ближайшему целому

Отдельного описания требуют правила округления для специального случая, когда (N+1)-й знак = 5, а последующие знаки равны нулю . Если во всех остальных случаях округление до ближайшего целого обеспечивает меньшую погрешность округления, то данный частный случай характерен тем, что для однократного округления формально безразлично, производить его «вверх» или «вниз» - в обоих случаях вносится погрешность ровно в 1/2 младшего разряда. Существуют следующие варианты правила округления до ближайшего целого для данного случая:

  • Математическое округление - округление всегда в бо́льшую по модулю сторону (предыдущий разряд всегда увеличивается на единицу).
  • Банковское округление (англ. banker"s rounding ) - округление для этого случая происходит к ближайшему чётному , то есть 2,5 → 2; 3,5 → 4.
  • Случайное округление - округление происходит в меньшую или большую сторону в случайном порядке, но с равной вероятностью (может использоваться в статистике). Также часто используется округление с неравными вероятностями (вероятность округления вверх равна дробной части), этот способ делает накопление ошибок случайной величиной с нулевым математическим ожиданием.
  • Чередующееся округление - округление происходит в меньшую или большую сторону поочерёдно.

Во всех вариантах в случае, когда (N+1)-й знак не равен 5 или последующие знаки не равны нулю, округление происходит по обычным правилам: 2,49 → 2; 2,51 → 3.

Математическое округление просто формально соответствует общему правилу округления (см. выше). Его недостатком является то, что при округлении большого числа значений, которые далее будут обрабатываться совместно, может происходить накопление ошибки округления . Типичный пример: округление до целых рублей денежных сумм, выражаемых в рублях и копейках. В реестре из 10 000 строк (если считать копеечную часть каждой суммы случайным числом с равномерным распределением, что обычно вполне допустимо) окажется в среднем около 100 строк с суммами, содержащими в части копеек значение 50. При округлении всех таких строк по правилам математического округления «вверх» сумма «итого» по округлённому реестру окажется на 50 рублей больше точной.

Три остальных варианта как раз и придуманы для того, чтобы уменьшить общую погрешность суммы при округлении большого количества значений. Округление «до ближайшего чётного» исходит из предположения, что при большом числе округляемых значений, имеющих 0,5 в округляемом остатке, в среднем половина из них окажется слева, а половина - справа от ближайшего чётного, таким образом, ошибки округления взаимно погасятся. Строго говоря, предположение это верно лишь тогда, когда набор округляемых чисел обладает свойствами случайного ряда, что обычно верно в бухгалтерских приложениях, где речь идёт о ценах, суммах на счетах и так далее. Если же предположение будет нарушено, то и округление «до чётного» может приводить к систематическим ошибкам. Для таких случаев лучше работают два следующих метода.

Два последних варианта округления гарантируют, что примерно половина специальных значений будет округлена в одну сторону, половина - в другую. Но реализация таких методов на практике требует дополнительных усилий по организации вычислительного процесса.

  • Округление в случайную сторону требует для каждой округляемой строки генерировать случайное число. При использовании псевдослучайных чисел, создаваемых линейным рекуррентным методом, для генерации каждого числа требуется операция умножения, сложения и деления по модулю, что для больших объёмов данных может существенно замедлить расчёты.
  • Чередующееся округление требует хранить флаг, показывающий, в какую сторону последний раз округлялось специальное значение, и при каждой операции переключать значение этого флага.

Обозначения

Операция округления числа x к большему (вверх ) обозначается следующим образом: ⌈ x ⌉ {\displaystyle \lceil x\rceil } . Аналогично, округление к меньшему (вниз ) обозначается ⌊ x ⌋ {\displaystyle \lfloor x\rfloor } . Эти символы (а также английские названия для этих операций - соответственно, ceiling и floor , досл. «потолок» и «пол») были введены К. Айверсоном в его работе A Programming Language , описавшей систему математических обозначений, позже развившуюся в язык программирования APL . Айверсоновские обозначения операций округления были популяризированы Д. Кнутом в его книге «Искусство программирования» .

По аналогии, округление к ближайшему целому часто обозначают как [ x ] {\displaystyle \left} . В некоторых прежних и современных (вплоть до конца XX века) работах так обозначалось округление к меньшему; такое использование этого обозначения восходит ещё к работе Гаусса 1808 года (третье его доказательство квадратичного закона взаимности). Кроме того, это же обозначение используется (с другим значением) в нотации Айверсона .

Использование округлений при работе с числами ограниченной точности

Реальные физические величины всегда измеряются с некоторой конечной точностью, которая зависит от приборов и методов измерения и оценивается максимальным относительным или абсолютным отклонением неизвестного истинного значения от измеренного, что в десятичном представлении значения соответствует либо определённому числу значащих цифр, либо определённой позиции в записи числа, все цифры после (правее) которой являются незначащими (лежат в пределах ошибки измерения). Сами измеренные параметры записываются с таким числом знаков, чтобы все цифры были надёжными, возможно, последняя - сомнительной. Погрешность при математических операциях с числами ограниченной точности сохраняется и изменяется по известным математическим законам, поэтому когда в дальнейших вычислениях возникают промежуточные значения и результаты с больши́м числом цифр, из этих цифр только часть являются значимыми. Остальные цифры, присутствуя в значениях, фактически не отражают никакой физической реальности и лишь отнимают время на вычисления. Вследствие этого промежуточные значения и результаты при вычислениях с ограниченной точностью округляют до того количества знаков, которое отражает реальную точность полученных значений. На практике обычно рекомендуется при длинных «цепочных» ручных вычислениях сохранять в промежуточных значениях на одну цифру больше. При использовании компьютера промежуточные округления в научно-технических приложениях чаще всего теряют смысл, и округляется только результат.

Так, например, если задана сила 5815 гс с точностью до грамма силы и длина плеча 1,4 м с точностью до сантиметра, то момент силы в кгс по формуле M = (m g) ⋅ h {\displaystyle M=(mg)\cdot h} , в случае формального расчёта со всеми знаками, окажется равным: 5,815 кгс 1,4 м = 8,141 кгс м . Однако если учесть погрешность измерения, то мы получим, что предельная относительная погрешность первого значения составляет 1/5815 ≈ 1,7 10 −4 , второго - 1/140 ≈ 7,1 10 −3 , относительная погрешность результата по правилу погрешности операции умножения (при умножении приближённых величин относительные погрешности складываются) составит 7,3 10 −3 , что соответствует максимальной абсолютной погрешности результата ±0,059 кгс м! То есть в реальности, с учётом погрешности, результат может составлять от 8,082 до 8,200 кгс м, таким образом, в рассчитанном значении 8,141 кгс м полностью надёжной является только первая цифра, даже вторая - уже сомнительна! Корректным будет округление результата вычислений до первой сомнительной цифры, то есть до десятых: 8,1 кгс м, или, при необходимости более точного указания рамок погрешности, представить его в виде, округлённом до одного-двух знаков после запятой с указанием погрешности: 8,14 ± 0,06 кгс м .

Эмпирические правила арифметики с округлениями

В тех случаях, когда нет необходимости в точном учёте вычислительных погрешностей, а требуется лишь приблизительно оценить количество точных цифр в результате расчёта по формуле, можно пользоваться набором простых правил округлённых вычислений :

  1. Все исходные значения округляются до реальной точности измерений и записываются с соответствующим числом значащих цифр, так, чтобы в десятичной записи все цифры были надёжными (допускается, чтобы последняя цифра была сомнительной). При необходимости значения записываются со значащими правыми нулями, чтобы в записи указывалось реальное число надёжных знаков (например, если длина в 1 м реально измерена с точностью до сантиметров, записывается «1,00 м», чтобы было видно, что в записи надёжны два знака после запятой), или точность явно указывается (например, 2500±5 м - здесь надёжными являются только десятки, до них и следует округлять).
  2. Промежуточные значения округляются с одной «запасной» цифрой.
  3. При сложении и вычитании результат округляется до последнего десятичного знака наименее точного из параметров (например, при вычислении значения 1,00 м + 1,5 м + 0,075 м результат округляется до десятых метра, то есть до 2,6 м). При этом рекомендуется выполнять вычисления в таком порядке, чтобы избегать вычитания близких по величине чисел и производить действия над числами по возможности в порядке возрастания их модулей.
  4. При умножении и делении результат округляется до наименьшего числа значащих цифр, которое имеют множители или делимое и делитель. Например, если тело при равномерном движении прошло дистанцию 2,5⋅10 3 метров за 635 секунд , то при вычислении скорости результат должен быть округлён до 3,9 м/с , поскольку одно из чисел (расстояние) известно лишь с точностью до двух значащих цифр. Важное замечание: если один операндов при умножении или делитель при делении является по смыслу целым числом (то есть не результатом измерений непрерывной физической величины с точностью до целых единиц, а, например, количеством или просто целой константой), то количество значащих цифр в нём на точность результата операции не влияет, и оставляемое число цифр определяется только вторым операндом. Например, кинетическая энергия тела массой 0,325 кг , движущегося со скоростью 5,2 м/с , равна E k = m v 2 2 = 0.325 ⋅ 5.2 2 2 = 4.394 ≈ 4.4 {\displaystyle E_{k}={\tfrac {mv^{2}}{2}}={\tfrac {0.325\cdot 5.2^{2}}{2}}=4.394\approx 4.4} Дж - округляется до двух знаков (по количеству значащих цифр в значении скорости), а не до одного (делитель 2 в формуле), так как значение 2 по смыслу - целая константа формулы, она является абсолютно точной и не влияет на точность вычислений (формально такой операнд можно считать «измеренным с бесконечным числом значащих цифр»).
  5. При вычислении значения функции f (x) {\displaystyle f\left(x\right)} требуется оценить значение модуля

Округление чисел - простейшая математическая операция. Чтобы уметь правильно округлять числа, необходимо знать три правила.

Правило 1

Когда мы округляем число до какого-то разряда, мы должны избавиться от всех цифр справа от этого разряда.

Например, нам нужно округлить число 7531 до сотен. В этом числе пять сотен. Справа от этого разряда стоят цифры 3 и 1. Превращаем их в нули и получаем число 7500. То есть, округлив число 7531 до сотен, мы получили 7500.

При округлении дробных чисел все происходит так же, только лишние разряды можно просто отбросить. Допустим, нам нужно округлить число 12,325 до десятых. Для этого после запятой мы должны оставить одну цифру - 3, а все цифры, стоящие справа, отбрасываем. Результат округления числа 12,325 до десятых - 12,3.

Правило 2

Если справа от оставляемой цифры отбрасываемая цифра равна 0, 1, 2, 3 или 4, то цифра, которую мы оставляем, не меняется.

Это правило сработало в двух предыдущих примерах.

Так, при округлении числа 7531 до сотен самой близкой к оставляемой цифре из отбрасываемых была тройка. Поэтому цифра, которую мы оставили, - 5 - не изменилась. Результатом округления стало число 7500.

Точно так же при округлении числа 12,325 до десятых цифрой, которую мы отбросили после тройки, была двойка. Поэтому самая правая из оставленных цифр (тройка) при округлении не изменилась. Получилось 12,3.

Правило 3

Если же самая левая из отбрасываемых цифр равна 5, 6, 7, 8 или 9, то разряд, до которого мы округляем, увеличивается на единицу.

Например, нужно округлить число 156 до десятков. В этом числе 5 десятков. В разряде единиц, от которого мы собираемся избавиться, стоит цифра 6. Значит, разряд десятков нам следует увеличить на единицу. Поэтому при округлении числа 156 до десятков мы получим 160.

Рассмотрим пример с дробным числом. Например, мы собираемся округлить 0,238 до сотых. По правилу 1 мы должны отбросить восьмёрку, которая стоит справа от разряда сотых. А по правилу 3 нам придётся увеличить тройку в разряде сотых на один. В итоге, округлив число 0,238 до сотых, мы получим 0,24.

Чтобы рассмотреть особенность округления того или иного числа, необходимо проанализировать конкретные примеры и некоторую основную информацию.

Как округлять числа до сотых

  • Для округления числа до сотых необходимо оставлять после запятой две цифры, остальные, конечно же, отбрасываются. Если первая цифра, которая отбрасывается, это 0, 1, 2, 3 или 4, то предыдущая цифра остается неизменной.
  • Если же отбрасываемая цифра – это 5, 6, 7, 8 или 9, то нужно увеличить предыдущую цифру на единицу.
  • К примеру, если нужно округлить число 75,748 , то после округления мы получаем 75,75 . Если мы имеем 19,912 , то в результате округления, а точнее, в отсутствии необходимости его использования, мы получаем 19,91 . В случае с 19,912 цифра, которая идет после сотых, не округляется, поэтому она просто отбрасывается.
  • Если речь идет о числе 18,4893 , то округление до сотых происходит следующим образом: первая цифра, которую нужно отбросить, это 3, поэтому никаких изменений не происходит. Получается 18,48 .
  • В случае с числом 0,2254 мы имеем первую цифру, которая отбрасывается при округлении до сотых. Это пятерка, которая указывает на то, что предыдущее число нужно увеличить на единицу. То есть, мы получаем 0,23 .
  • Бывают и случаи, когда округления изменяет все цифры в числе. К примеру, чтобы округлить до сотых число 64,9972 , мы видим, что число 7 округляет предыдущие. Получаем 65,00 .

Как округлять числа до целых

При округлении чисел до целых ситуация такая же. Если мы имеем, к примеру, 25,5 , то после округления мы получаем 26 . В случае с достаточным количеством цифр после запятой округление происходит таким образом: после округления 4,371251 мы получаем 4 .

Округление до десятых происходит таким же образом, как и в случае с сотыми. К примеру, если нужно округлить число 45,21618 , то мы получаем 45,2 . Если вторая цифра после десятой – это 5 или больше, то предыдущая цифра увеличивается на единицу. В качестве примера можно округлить 13,6734 , и в итоге получится 13,7 .

Важно обращать внимание на цифру, которая расположена перед той, которая отсекается. К примеру, если мы имеет число 1,450 , то после округления получаем 1,4 . Однако в случае с 4,851 целесообразно округлять до 4,9 , так как после пятерки еще идет единица.

Многие люди интересуются, как округлять числа. Эта необходимость часто возникает у людей, которые свою жизнь связывают с бухгалтерией или другими видами деятельности, где требуются расчеты. Округление может производиться до целых, десятых и так далее. И необходимо знать, как это делать правильно, чтобы расчеты были более менее точными.

А что такое вообще круглое число? Это то, которое заканчивается на 0 (по большей части). В обыденной жизни умение округлять числа значительно облегчает походы по магазинам. Стоя у кассы, можно приблизительно прикинуть общую стоимость покупок, сравнить, сколько стоит килограмм одноименного товара в различных по весу пакетах. С числами, приведенными к удобной форме, легче производить устные расчеты, не прибегая к помощи калькулятора.

Зачем округляются числа?

Любые цифры человек склонен округлять в тех случаях, когда нужно выполнять более упрощенные операции. Например, дыня весит 3,150 килограммов. Когда человек будет рассказывать своим знакомым о том, сколько граммов имеет южный плод, он может прослыть не очень интересным собеседником. Значительно лаконичнее звучат фразы типа "Вот я купил трехкилограмовую дыню" без вникания во всякие ненужные детали.

Интересно, что даже в науке нет необходимости всегда иметь дело с максимально точными числами. А если речь идет о периодических бесконечных дробях, которые имеют вид 3,33333333...3, то это становится невозможным. Поэтому самым логичным вариантом будет обычное округление их. Как правило, результат после этого искажается незначительно. Итак, как округлять числа?

Несколько важных правил при округлении чисел

Итак, если вы захотели округлить число, важно понимать основные принципы округления? Это операция изменения направленная на уменьшение количества знаков после запятой. Чтобы осуществлять данное действие, необходимо знать несколько важных правил:

  1. Если число нужного разряда находится в пределах 5-9, округление осуществляется в большую сторону.
  2. Если число нужного разряда находится в пределах 1-4, округление производится в меньшую сторону.

Например, у нас есть число 59. Нам его нужно округлить. Чтобы это сделать, надо взять число 9 и добавить к нему единицу, чтобы получилось 60. Вот и ответ на вопрос, как округлять числа. А теперь рассмотрим частные случаи. Собственно, мы разобрались, как округлить число до десятков с помощью этого примера. Теперь осталось всего лишь использовать эти знания на практике.

Как округлить число до целых

Очень часто случается так, что имеется необходимость округлить, например, число 5,9. Данная процедура не составляет большого труда. Нужно для начала опустить запятую, и перед нашим взором предстает при округлении уже знакомое нам число 60. А теперь ставим запятую на место, и получаем 6,0. А поскольку нули в десятичных дробях, как правило, опускаются, то получаем в итоге цифру 6.

Аналогичную операцию можно производить и с более сложными числами. Например, как округлять числа типа 5,49 до целых? Здесь все зависит от того, какие цели вы поставите перед собой. Вообще, по правилам математики, 5,49 - это все-таки не 5,5. Поэтому округлить его в большую сторону нельзя. Но можно его округлить до 5,5, после чего уже законным становится округление до 6. Но такая уловка не всегда срабатывает, так что нужно быть предельно осторожным.

В принципе, выше уже был рассмотрен пример правильного округления числа до десятых, поэтому сейчас важно отобразить только основной принип. По сути, все происходит приблизительно таким же образом. Если цифра, которая находится на второй позиции после запятой, находится в пределах 5-9, то она вообще убирается, а стоящая перед ней цифра увеличивается на один. Если же меньше 5, то данная цифра убирается, а предыдущая остается на своем месте.

Например, при 4,59 до 4,6 цифра "9" уходит, а к пятерке прибавляется единица. А вот при округлении 4,41 единица опускается, а четверка остается в незименном виде.

Как используют маркетологи неумение массового потребителя округлять цифры?

Оказывается, большая часть людей на свете не имеет привычки оценить реальную стоимость продукта, что активно эксплуатируют маркетологи. Все знают слоганы акций типа "Покупайте всего за 9,99". Да, мы сознательно понимаем, что это уже по сути десять долларов. Тем не менее наш мозг устроен так, что воспринимает только первую цифру. Так что нехитрая операция приведения числа в удобный вид должно войти в привычку.

Очень часто округление позволяет лучше оценить промежуточные успехи, выражающиеся в численной форме. Например, человек стал зарабатывать 550 долларов в месяц. Оптимист скажет, что это почти 600, пессимист - что это чуть больше 500. Вроде бы разница есть, но мозгу приятнее "видеть", что объект достиг чего-то большего (или наоборот).

Можно привести огромное количество примеров, когда умение округлять оказывается невероятно полезным. Важно проявлять изобретательность и по возможности на загружаться ненужной информацией. Тогда успех будет незамедлительным.

Введение.............................................................................................................

ЗАДАЧА № 1. Ряды предпочтительных чисел...............................................

ЗАДАЧА № 2. Округление результатов измерений.......................................

ЗАДАЧА № 3. Обработка результатов измерений.........................................

ЗАДАЧА № 4. Допуски и посадки гладких цилиндрических соединений...

ЗАДАЧА № 5. Допуски формы и расположения...........................................

ЗАДАЧА № 6. Шероховатость поверхности.................................................

ЗАДАЧА № 7. Размерные цепи........................................................................

Список литературы............................................................................................

Задача № 1. Округление результатов измерений

При выполнении измерений важно соблюдать определенные правила округления и записи их результатов в технической документации, так как при несоблюдении этих правил возможны существенные ошибки в интерпретации результатов измерений.

Правила записи чисел

1. Значащие цифры данного числа - все цифры от первой слева, не равной нулю, до последней справа. При этом нули, следующие из множителя 10, не учитывают.

Примеры.

а) Число 12,0 имеет три значащие цифры.

б) Число 30 имеет две значащие цифры.

в) Число 12010 8 имеет три значащие цифры.

г) 0,51410 -3 имеет три значащие цифры.

д) 0,0056 имеет две значащие цифры.

2. Если необходимо указать, что число является точным, после числа указывают слово "точно" или последнюю значащую цифру печатают жирным шрифтом. Например: 1 кВт / ч = 3600 Дж (точно) или 1 кВт / ч = 3600 Дж.

3. Различают записи приближенных чисел по количеству значащих цифр. Например, различают числа 2,4 и 2,40. Запись 2,4 означает, что верны только целые и десятые доли, истинное значение числа может быть, например, 2,43 и 2,38. Запись 2,40 означает, что верны и сотые доли: истинное значение числа может быть 2,403 и 2,398, но не 2,41 и не 2,382. Запись 382 означает, что все цифры верны: если за последнюю цифру ручаться нельзя, то число должно быть записано 3,810 2 . Если в числе 4720 верны лишь две первые цифры, оно должно быть записано в виде: 4710 2 или 4,710 3 .

4. Число, для которого указывают допустимое отклонение, должно иметь последнюю значащую цифру того же разряда, как и последняя значащая цифра отклонения.

Примеры.

а) Правильно: 17,0 + 0,2. Неправильно: 17 + 0,2 или 17,00 + 0,2.

б) Правильно: 12,13+ 0,17. Неправильно: 12,13+ 0,2.

в) Правильно: 46,40+ 0,15. Неправильно: 46,4+ 0,15 или 46,402+ 0,15.

5. Числовые значения величины и её погрешности (отклонения) целесообразно записывать с указанием одной и той же единицы величины. Например: (80,555 + 0,002) кг.

6. Интервалы между числовыми значениями величин иногда целесообразно записывать в текстовом виде, тогда предлог "от" означает "", предлог "до"– "", предлог "свыше" – ">", предлог "менее" – "<":

"d принимает значения от 60 до 100" означает "60d 100",

"d принимает значения свыше 120 менее 150" означает "120 <d < 150",

"d принимает значения свыше 30 до 50" означает "30 <d 50".

Правила округления чисел

1. Округление числа представляет собой отбрасывание значащих цифр справа до определенного разряда с возможным изменением цифры этого разряда.

2. В случае если первая из отбрасываемых цифр (считая слева направо) менее 5, то последнюю сохраняемую цифру не меняют.

Пример: Округление числа 12,23 до трех значащих цифр дает 12,2.

3. В случае если первая из отбрасываемых цифр (считая слева направо) равна 5, то последнюю сохраняемую цифру увеличивают на единицу.

Пример: Округление числа 0,145 до двух цифр дает 0,15.

Примечание . В тех случаях, когда следует учитывать результаты предыдущих округлений, поступают следующим образом.

4. Если отбрасываемая цифра получена в результате округления в меньшую сторону, то последнюю оставшуюся цифру увеличивают на единицу (с переходом при необходимости в следующие разряды) , иначе – наоборот. Это касается и дробных и целых чисел.

Пример: Округление числа 0,25 (полученного в результате предыдущего округления числа 0,252) дает 0,3.

4. В случае если первая из отбрасываемых цифр (считая слева направо) более 5, то последнюю сохраняемую цифру увеличивают на единицу.

Пример: Округление числа 0,156 до двух значащих цифр дает 0,16.

5. Округление выполняют сразу до желаемого количества значащих цифр, а не по этапам.

Пример: Округление числа 565,46 до трех значащих цифр дает 565.

6. Целые числа округляют по тем же правилам, что и дробные.

Пример: Округление числа 23456 до двух значащих цифр дает 2310 3

Числовое значение результата измерения должно оканчиваться цифрой того же разряда, что и значение погрешности.

Пример: Число 235,732 + 0,15 должно быть округлено до 235,73 + 0,15, но не до 235,7 + 0,15.

7. Если первая из отбрасываемых цифр (считая слева направо) меньше пяти, то остающиеся цифры не меняются.

Пример: 442,749+ 0,4 округляется до 442,7+ 0,4.

8. Если первая из отбрасываемых цифр больше или равна пяти, то последняя сохраняемая цифра увеличивается на единицу.

Пример: 37,268 + 0,5 округляется до 37,3 + 0,5; 37,253 + 0,5 должно быть округлено до 37,3 + 0,5.

9. Округление следует выполнять сразу до желаемого числа значащих цифр, поэтапное округление может привести к ошибкам.

Пример: Поэтапное округление результата измерения 220,46+ 4 дает на первом этапе 220,5+ 4 и на втором 221+ 4, в то время как правильный результат округления 220+ 4.

10. Если погрешность средств измерения указывается всего с одной или двумя значащими цифрами, а рассчетное значение погрешности получают с большим числом знаков, в окончательном значении рассчитанной погрешности должны быть оставлены соответственно только первые одна или две значащие цифры. При этом, если полученное число начинается с цифр 1 или 2, то отбрасывание второго знака приводит к очень большой ошибке (до 3050 %), что недопустимо. Если же полученное число начинается с цифры 3 и более, например, с цифры 9, то сохранение второго знака, т.е. указание погрешности, например, 0,94 вместо 0,9, является дезинформацией, так как исходные данные не обеспечивают такой точности.

Исходя из этого на практике установилось такое правило: если полученное число начинается со значащей цифры, равной или большей 3, то в нем сохраняется лишь она одна; если же оно начинается со значащих цифр, меньших 3, т.е. с цифр 1 и 2, то в нем сохраняют две значащих цифры. В соответствии с этим правилом установлены и нормируемые значения погрешностей средств измерений: в числах 1,5 и 2,5 % указываются две значащих цифры, но в числах 0,5; 4; 6 % указывается лишь одна значащая цифра.

Пример: На вольтметре класса точности 2,5 с пределом измерений х К = 300 В был получен отсчет измеряемого напряжения х = 267,5 В. В каком виде должен быть записан результат измерения в отчете?

Расчет погрешности удобнее вести в следующем порядке: вначале необходимо найти абсолютную погрешность, а затем – относительную. Абсолютная погрешность х =  0 х К /100, для приведенной погрешности вольтметра  0 = 2,5 % и пределов измерения (диапазона измерения) прибора х К = 300 В: х = 2,5300/100 = 7,5 В ~ 8 В; относительная погрешность  = х 100/х = 7,5100/267,5 = 2,81 % ~ 2,8 % .

Так как первая значащая цифра значения абсолютной погрешности (7,5 В) больше трех, то это значение должно быть округлено по обычным правилам округления до 8 В, но в значении относительной погрешности (2,81 %) первая значащая цифра меньше 3, поэтому здесь должны быть сохранены в ответе два десятичных разряда и указано  = 2,8 %. Полученное значение х = 267,5 В должно быть округлено до того же десятичного разряда, которым оканчивается округленное значение абсолютной погрешности, т.е. до целых единиц вольт.

Таким образом, в окончательном ответе должно быть сообщено: "Измерение произведено с относительной погрешностью = 2,8 % . Измеренное напряжениеХ = (268+ 8) В".

При этом более наглядно указать пределы интервала неопределенности измеренной величины в виде Х = (260276) В или 260 ВX276 В.



Похожие публикации