Параметр решение егэ. "методы решения задач с параметрами"

Рассмотрим теперь квадратное уравнение

где - неизвестная величина, - параметры (коэффициенты) уравнения.

К критическим значениям параметра следует отнести, прежде всего, значение При указанном значении параметра уравнение (1) принимает вид

следовательно, порядок уравнения понижается на единицу. Уравнение (2) является линейным уравнением и метод его решения рассматривался ранее.

При другие критические значения параметров определяются дискриминантом уравнения. Известно, что при уравнение (1) корней не имеет; при оно имеет единственный корень при уравнение (1) имеет два различных корня и

1). Найти все значения параметра для которых квадратное уравнение

а) имеет два различных корня;

б) не имеет корней;

в) имеет два равных корня.

Решение. Данное уравнение по условию является квадратным, а поэтому Рассмотрим дискриминант данного уравнения

При уравнение имеет два различных корня, т.к.

При уравнение корней не имеет, т.к. Данное квадратное уравнение не может иметь двух равных корней, т.к. при а это противоречит условию задачи.

Ответ: При уравнение имеет два различных корня.

При уравнение корней не имеет.

2).Решить уравнение. Для каждого допустимого значения параметра решить уравнение

Решение. Рассмотрим сначала случай, когда

(в этом случае исходное уравнение становится линейным уравнением). Таким образом, значение параметра и являются его критическими значениями. Ясно, что при корнем данного уравнения является а при его корнем является

Если т.е. и то данное уравнение является квадратным. Найдем его дискриминант:

При всех значениях дискриминант принимает неотрицательные значения, причем он обращается в нуль при (эти значения параметра тоже являются его критическими значениями).

Поэтому, если то данное уравнение имеет единственный корень

При этом значению параметра соответствует корень

а значению соответствует корень

Если же то уравнение имеет два различных корня. Найдем эти корни.



Ответ. Если то если то если то

если то , .

3).Решить уравнение. При каких значениях параметра а уравнение имеет единственное решение?

Решение. Данное уравнение равносильно системе

Наличие квадратного уравнения и условие единственности решения, естественно, приведут к поиску корней дискриминанта. Вместе с тем условие х ≠ -3 должно привлечь внимание. И «тонкий момент» заключается в том, что квадратное уравнение системы может иметь два корня! Но обязательно только один из них должен равняться -3. Имеем

D = а 2 - 4 , отсюда D =0, если а = ±2; х = -3 - корень уравнения х 2 – а х +1 = 0 при

а = -10/3, причем при таком значении а второй корень квадратного уравнения отличен

Ответ. а = ±2 или а = -10/3.

4).Решить уравнение. При каких значениях параметра а уравнение

(а - 2)x 2 + (4 - 2а ) х +3 = 0 имеет единственное решение?

Решение. Понятно, что надо начинать со случая а = 2. Но при а = 2 исходное уравнение вообще не имеет решений. Если а ≠ 2 , то данное уравнение - квадратное, и, казалось бы, искомые значения параметра - это корни дискриминанта. Однако дискриминант обращается в нуль при а = 2 или а = 5 . Поскольку мы установили, что а= 2 не подходит, то

Ответ , а = 5.

9).Решить уравнение. При каких значениях параметра а уравнение ах 2 - 4х + а + 3 = 0 имеет более одного корня?

Решение . При а = 0 уравнение имеет единственный корень, что не удовлетворяет условию. При а ≠ 0 исходное уравнение, будучи квадратным, имеет два корня, если его дискриминант 16 – 4а 2 – 12а положительный. Отсюда получаем -4 <а <1.

Однако в полученный промежуток (-4; 1) входит число 0.Ответ. -4<а <0 или 0<а <1.

10). При каких значениях параметра а уравнение а (а +3)х 2 + (2а +6)х – 3а – 9 = 0 имеет более одного корня?

Решение . Стандартный шаг - начать со случаев а = 0 и а = -3. При а = 0 уравнение имеет единственное решение. Любопытно, что при а = -3 решением уравнения служит любое действительное число. При а ≠ -3 и а ≠ 0, разделив обе части данного уравнения на а + 3, получим квадратное уравнение ах 2 + 2х - 3 = 0, дискриминант которого 4 (1 + За ) положителен при а > ⅓. Опыт предыдущих примеров подсказывает, что из промежутка

(-⅓ ;∞) надо исключить точку а = 0, а в ответ не забыть включить а = -3.

Ответ. а = -3, или - ⅓ < а < 0, или а > 0.

11).Решить уравнение :

Решение. Сначала заметим, что при данное уравнение равносильно уравнению которое не имеет решений. Если же

1. Задача.
При каких значениях параметра a уравнение (a - 1)x 2 + 2x + a - 1 = 0 имеет ровно один корень?

1. Решение.
При a = 1 уравнение имеет вид 2x = 0 и, очевидно, имеет единственный корень x = 0. Если a № 1, то данное уравнение является квадратным и имеет единственный корень при тех значениях параметра, при которых дискриминант квадратного трехчлена равен нулю. Приравнивая дискриминант к нулю, получаем уравнение относительно параметра a 4a 2 - 8a = 0, откуда a = 0 или a = 2.

1. Ответ: уравнение имеет единственный корень при a О {0; 1; 2}.

2. Задача.
Найти все значения параметра a , при которых имеет два различных корня уравнение x 2 +4ax +8a +3 = 0.
2. Решение.
Уравнение x 2 +4ax +8a +3 = 0 имеет два различных корня тогда и только тогда, когда D = 16a 2 -4(8a +3) > 0. Получаем (после сокращения на общий множитель 4) 4a 2 -8a -3 > 0, откуда

2. Ответ:

a О (-Ґ ; 1 – Ц 7 2
) И (1 + Ц 7 2
; Ґ ).

3. Задача.
Известно, что
f 2 (x ) = 6x -x 2 -6.
а) Постройте график функции f 1 (x ) при a = 1.
б) При каком значении a графики функций f 1 (x ) и f 2 (x ) имеют единственную общую точку?

3. Решение.
3.а. Преобразуем f 1 (x ) следующим образом
График этой функции при a = 1 изображен на рисунке справа.
3.б. Сразу отметим, что графики функций y = kx +b и y = ax 2 +bx +c (a № 0) пересекаются в единственной точке тогда и только тогда, когда квадратное уравнение kx +b = ax 2 +bx +c имеет единственный корень. Используя представление f 1 из 3.а , приравняем дискриминант уравнения a = 6x -x 2 -6 к нулю. Из уравнения 36-24-4a = 0 получаем a = 3. Проделав то же самое с уравнением 2x -a = 6x -x 2 -6 найдем a = 2. Нетрудно убедиться, что эти значения параметра удовлетворяют условиям задачи. Ответ: a = 2 или a = 3.

4. Задача.
Найти все значения a , при которых множество решений неравенства x 2 -2ax -3a і 0 содержит отрезок .

4. Решение.
Первая координата вершины параболы f (x ) = x 2 -2ax -3a равна x 0 = a . Из свойств квадратичной функции условие f (x ) і 0 на отрезке равносильно совокупности трех систем
имеет ровно два решения?

5. Решение.
Перепишем это уравнение в виде x 2 + (2a -2)x - 3a +7 = 0. Это квадратное уравнение, оно имеет ровно два решения, если его дискриминант строго больше нуля. Вычисляя дискриминант, получаем, что условием наличия ровно двух корней является выполнение неравенства a 2 +a -6 > 0. Решая неравенство, находим a < -3 или a > 2. Первое из неравенств, очевидно, решений в натуральных числах не имеет, а наименьшим натуральным решением второго является число 3.

5. Ответ: 3.

6. Задача (10 кл.)
Найти все значения a , при которых график функции или, после очевидных преобразований, a -2 = | 2-a | . Последнее уравнение равносильно неравенству a і 2.

6. Ответ: a О .

Подводим итоги. Ограничение на параметр даёт только второе условие из ОДЗ: a ∈[−4; 4], а требование о несовпадении корней выполняется, если исключить из этого промежктка a = ±3.

Ответ: a ∈[−4;−3)∪(−3; 3)∪(3; 4]

Как видите, коэффициенты здесь подобраны так, что алгебраические операции не сложны и не занимают много времени. Но, если вы забыли об особенностях квадратных корней и упустили из виду именно условие 2) из ОДЗ, то решения не получите вообще.
Надеюсь, что многие выпускники всё-таки справились с этой задачей, и желаю им дальнейших успехов на экзаменах по выбору.

Задача 2

Найдите все значения а , при каждом из которых уравнение

x − 2a _____ x + 2 + x − 1 ____ x a = 1

Имеет единственный корень.

Решение.

Начинаем, конечно, с ОДЗ: x ≠ −2 и x a .
Преобразуем:

Привели дроби к общему знаменателю и сразу отбросили знаменатель. Новое уравнение будет равносильно заданному только с учётом ограничений ОДЗ.

Почему можно так делать?
- Потому что дроби с равными знаменателями равны тогда, когда равны их числители.
Когда нельзя так делать?
- Когда не проверено неравенство знаменателя нулю или забыли предварительно записать ОДЗ.
Кому можно, а кому нельзя так делать?
- Аккуратным и вдумчивым ученикам можно, невнимательным нельзя. Последним надо переносить всё в левую часть равенства, упрощать выражение в виде полной дроби, затем переходить к совокупности условий: "дробь равна нулю, если её числитель равен нулю, а знаменатель не равен нулю".

После раскрытия скобок и приведения подобных членов получим

x 2 − 2ax + 2a 2 − x − 2 = −2a .

Окончательно приведём к виду, характерному для квадратного уравнения:

x 2 − (2a + 1)·x + (2a 2 + 2a − 2) = 0.

Дискриминант этого уравнения

D = (2a + 1) 2 − 4·(2a 2 + 2a − 2) = −4a 2 − 4a + 9.

Заданное в условии задачи уравнение может иметь единственное решение в двух случаях. Во-первых, когда дискриминант полученного квадратного уравнения равен нулю, а его единственный корень не совпадает с ограничениями ОДЗ. Иначе его нужно будет отбросить и решений не останется совсем. Во-вторых, когда квадратное уравнение имеет два разных корня (дискриминант больше нуля), но один и только один из них не удовлетворяет ОДЗ.

Случай I. D = 0.

−4a 2 − 4a + 9 = 0 при a = (−1 ± √10__ )/2.

При этом корень уравнения x = (2a + 1)/2 = a + 0,5 . Очевидно, что при полученных значениях a он не совпадает ни с a , ни с −2.
Таким образом, получены два искомых значения параметра.

Случай II.

Определим те значения a x = а .

a 2 − (2a + 1)·a + (2a 2 + 2a − 2) = 0.
a 2 + a − 2 = 0.
a = 1 и a = −2.

Определим те значения a , при которых корнем квадратного уравнения является x = −2.

(−2) 2 − (2a + 1)·(−2) + (2a 2 + 2a − 2) = 0.
a 2 + 3a + 2 = 0.
a = −1 и a = −2.

При этих значениях параметра а можно продолжить исследование дискриминанта и второго корня квадратного уравнения. Но проще проверить их подстановкой в исходное уравнения условия задачи.

a = 1

x − 2·1 _______ x + 2 + x − 1 ____ x − 1 = 1; x − 2 _____ x + 2 + 1 = 1; x − 2 _____ x + 2 = 0; x = 2.

a = −1

x − 2·(−1) _________ x + 2 + x − 1 _______ x − (−1) = 1; x + 2 ____ x + 2 + x − 1 ____ x + 1 = 1; 1 + x − 1 ____ x + 1 = 1; x − 1 ____ x + 1 = 0; x = 1.

a = −2

x − 2·(−2) _________ x + 2 + x − 1 _______ x − (−2) = 1; x + 4 ____ x + 2 + x − 1 ____ x + 2 = 1; x + 4 + x − 1 = x + 2; x = −1.

Таким образом все три значения удовлетворяют условию задачи.

Ответ: a ∈{(−1 − √10__ )/2; −2; −1; 1; (−1 + √10__ )/2.}

Внимание: Если вы нашли ошибку или опечатку, пожалуйста, сообщите о ней на email.

МКОУ «Лодейнопольская средняя общеобразовательная школа № 68»

_________________________________________________________________________________________________________________________________

Выступление на заседании МО

Методы решения задач

с параметрами

Прокушева Наталья Геннадьевна

г. Лодейное Поле

2013-2014

Задачи с параметрами

Задачи с параметрами относятся к наиболее сложным из задач, предлагающихся как на Едином государственном экзамене, так и на дополнительных конкурсных экзаменах в ВУЗы.

Они играют важную роль в формировании логического мышления и математической культуры. Затруднения, возникающие при их решении связаны с тем, что каждая задача с параметрами представляет собой целый класс обычных задач, для каждой из которых должно быть получено решение.

Если в уравнении (неравенстве) некоторые коэффициенты заданы не конкретными числовыми значениями, а обозначены буквами, то они называются параметрами, а уравнение (неравенство) параметрическим.

Как правило, неизвестные обозначаются последними буквами латинского алфавита: x , y , z , …, а параметры – первыми: a , b , c , …

Решить уравнение (неравенство) с параметрами – значит указать, при каких значениях параметров существуют решения и каковы они. Два уравнения (неравенства), содержащие одни и те же параметры, называются равносильными, если:

а) они имеют смысл при одних и тех же значениях параметров;

б) каждое решение первого уравнения (неравенства) является решением второго и наоборот.

Естественно, такой небольшой класс задач многим не позволяет усвоить главное: параметр, будучи фиксированным, но неизвестным числом, имеет как бы двойственную природу. Во-первых, предполагаемая известность позволяет «общаться» с параметром как с числом, а во-вторых, – степень свободы общения ограничивается его неизвестностью. Так, деление на выражение, содержащее параметр, извлечение корня четной степени из подобных выражений требуют предварительных исследований. Как правило, результаты этих исследований влияют и на решение, и на ответ.

Как начинать решать такие задачи? Не надо бояться задач с параметрами. Прежде всего, надо сделать то, что делается при решении любого уравнения или неравенства- привести заданное уравнение (неравенство) к более простому виду, если это возможно: разложить рациональное выражение на множители, разложить тригонометрический многочлен на множители, избавиться от модулей, логарифмов, и т.д.. затем необходимо внимательно еще и еще прочитать задание.

При решении задач, содержащих параметр, встречаются задачи, которые условно можно разделить на два большие класса. В первый класс можно отнести задачи, в которых надо решить неравенство или уравнение при всех возможных значениях параметра. Ко второму классу отнесем задания, в которых надо найти не все возможные решения, а лишь те из них, которые удовлетворяют некоторым дополнительным условиям.

Наиболее понятный для школьников способ решения таких задач состоит в том, что сначала находят все решения, а затем отбирают те, которые удовлетворяют дополнительным условиям. Но это удается не всегда. Встречаются большое количество задач, в которых найти все множество решений невозможно, да нас об этом и не просят. Поэтому приходится искать способ решить поставленную задачу, не имея в распоряжении всего множества решений данного уравнения или неравенства, например, поискать свойства входящих в уравнение функций, которые позволят судить о существовании некоторого множества решений.

Основные типы задач с параметрами

Тип 1. Уравнения, неравенства, их системы и совокупности, которые необходимо решить либо для любого значения параметра (параметров), либо для значений параметра, принадлежащих заранее оговоренному множеству.

Этот тип задач является базовым при овладении темой «Задачи с параметрами», поскольку вложенный труд предопределяет успех и при решении задач всех других основных типов.

Тип 2. Уравнения, неравенства, их системы и совокупности, для которых требуется определить количество решений в зависимости от значения параметра (параметров).

Обращаем внимание на то, что при решении задач данного типа нет необходимости ни решать заданные уравнения, неравенства, их системы и совокупности и т. д., ни приводить эти решения; такая лишняя в большинстве случаев работа является тактической ошибкой, приводящей к неоправданным затратам времени. Однако не стоит абсолютизировать сказанное, так как иногда прямое решение в соответствии с типом 1 является единственным разумным путем получения ответа при решении задачи типа 2.

Тип 3. Уравнения, неравенства, их системы и совокупности, для которых требуется найти все те значения параметра, при которых указанные уравнения, неравенства, их системы и совокупности имеют заданное число решений (в частности, не имеют или имеют бесконечное множество решений).

Легко увидеть, что задачи типа 3 в каком-то смысле обратны задачам типа 2.

Тип 4. Уравнения, неравенства, их системы и совокупности, для которых при искомых значениях параметра множество решений удовлетворяет заданным условиям в области определения.

Например, найти значения параметра, при которых:

1) уравнение выполняется для любого значения переменной из заданного промежутка;
2) множество решений первого уравнения является подмножеством множества решений второго уравнения и т. д.

Комментарий. Многообразие задач с параметром охватывает весь курс школьной математики (и алгебры, и геометрии), но подавляющая часть из них на выпускных и вступительных экзаменах относится к одному из четырех перечисленных типов, которые по этой причине названы основными.

Наиболее массовый класс задач с параметром - задачи с одной неизвестной и одним параметром. Следующий пункт указывает основные способы решения задач именно этого класса.

Основные методы решения задач с параметром

Способ I (аналитический). Это способ так называемого прямого решения, повторяющего стандартные процедуры нахождения ответа в задачах без параметра. Иногда говорят, что это способ силового, в хорошем смысле «наглого» решения.

Способ II (графический). В зависимости от задачи (с переменной x и параметром a ) рассматриваются графики или в координатной плоскости (x; y ), или в координатной плоскости (x ; a ).

Комментарий. Исключительная наглядность и красота графического способа решения задач с параметром настолько увлекает изучающих тему «Задачи с параметром», что они начинают игнорировать другие способы решения, забывая общеизвестный факт: для любого класса задач их авторы могут сформулировать такую, которая блестяще решается данным способом и с колоссальными трудностями остальными способами. Поэтому на начальной стадии изучения опасно начинать с графических приемов решения задач с параметром.

Способ III (решение относительно параметра). При решении этим способом переменные x и a принимаются равноправными и выбирается та переменная, относительно которой аналитическое решение признается более простым. После естественных упрощений возвращаемся к исходному смыслу переменных x и a и заканчиваем решение.

Перейдем теперь к демонстрации указанных способов решения задач с параметром.

1. Линейные уравнения и неравенства с параметрами

Линейная функция: – уравнение прямой с угловым коэффициентом . Угловой коэффициент равен тангенсу угла наклона прямой к положительному направлению оси .

Линейные уравнения с параметрами вида

Если , уравнение имеет единственное решение.

Если , тоуравнение не имеет решений , когда , и уравнение имеет бесконечно много решений , когда .

Пример 1. Решить уравнение | x | = a .

Решение:

    a > 0, => x 1,2 = ± a

    a = 0, => x = 0

    a < 0, => решений нет.

Ответ: x 1,2 = ±a при a > 0; x = 0 при a = 0; решений нет при a < 0.

Пример 2. Решить уравнение |3 – x | = a .

Решение:

    a > 0, => 3 – x = ± a , => x = 3 ± a

    a = 0, => 3 – x = 0. => x = 3

    a < 0, => решений нет.

Ответ: x 1,2 = 3 ±a при a > 0; x = 3 при a = 0; решений нет при a < 0.

Пример 3. Решить уравнение m ² x m = x + 1.

Решение:

m ² x m = x + 1

m ² x x = m + 1

(m² – 1)x = m + 1


Ответ:
при m ± 1; x Є R при m = –1; решений нет при m = 1.

Пример 4. а решить уравнение: ( a 2 – 4) x = a + 2 .

Решение: Разложим коэффициент при на множители. .

Если , уравнение имеет единственное решение: .

Если , уравнение не имеет решений.

Если , тоуравнение имеет бесконечно много решений .

Пример 6. При всех значениях параметра a решить уравнение:
.

Решение: ОДЗ: . При этом условии уравнение равносильно следующему: . Проверим принадлежность к ОДЗ: , если . Если же , то уравнение не имеет решений.

Пример 7. При всех значениях параметра а решить уравнение: | х + 3| – a | x – 1| = 4.

Решение: Разобьем числовую прямую на 3 части точками, в которых выражения под знаком модуля обращаются в нуль и решим 3 системы:

1) , если . Найденный будет решением, если .

2) , если . Найденный удовлетворяет нужному неравенству, следовательно, является решением при . Если же , то решением является любой .

3) , если . Найденный не удовлетворяет нужному неравенству, следовательно, не является решением при . Если же , то решением является любой x > 1.

Ответ: при ; при ;

п ри ; является также решением при всех .

Пример 8. Найти все а , при каждом из которых хотя бы одно из решений уравнения 15x – 7a = 2 – 3ax + 6a меньше 2 .

Решение: Найдем решения уравнения при каждом . , если . Решим неравенство: .

При уравнение не имеет решений.

Ответ : а Î (–5 , 4) .

Линейные неравенства с параметрами

Например: Решить неравенство: kx < b .

Если k > 0, то
. Если k < 0, то
. Если k = 0, то при b > 0 решением является любой x Є R , а при
решений нет.

Аналогично решите остальные неравенства в рамочке.

Пример 1. Для всех значений параметра а решить неравенство
.

Решение:


. Если скобка перед x положительна, т.е. при
, то
. Если скобка перед x отрицательна, т.е. при
, то
. Если же a = 0 или a = , то решений нет.

Ответ:
при
;
при
;

решений нет при a = 0 или a = .

Пример 2 . Для всех значений параметра а решить неравенство |х – а| – |x + a | < 2a .

Решение:

При a =0 имеем неверное неравенство 0 < 0, т.е. решений нет. Пусть a > 0, тогда при x < –a оба модуля раскрываются с минусом и получаем неверное неравенство 2a < 2a , т.е. решений нет. Если x Є [–a ; a ] , то первый модуль раскрывается с минусом, а второй с плюсом и получаем неравенство –2x < 2a , т.е. x > –a , т.е., решением является любой x Є (–a ; a ]. Если x > a оба модуля раскрываются с плюсом и получаем верное неравенство –2a < 2a , т.е. , решением является любой x Є (a ; +∞). Объединяя оба ответа, получим, что при a > 0 x Є (–a ; +∞).

Пусть a < 0, тогда первое слагаемое больше, чем второе, поэтому разность в левой части неравенства положительна и, следовательно, не может быть меньше отрицательного числа 2a . Т.о., при a < 0 решений нет.

Ответ: x Є (–a ; +∞) при a > 0, решений нет при
.

Замечание. Решение данной задачи получается быстрее и проще, если использовать геометрическую интерпретацию модуля разности двух чисел, как расстояние между точками. Тогда выражение в левой части можно интерпретировать, как разность расстояний от точки х до точек а и –а .

Пример 3. Найти все а , при каждом из которых все решения неравенства
удовлетворяют неравенству 2x a ² + 5 < 0.

Решение:

Решением неравенства |x | ≤ 2 является множество A =[–2; 2], а решением неравенства 2x a ² + 5 < 0 является множество B = (–∞;
) . Чтобы удовлетворить условию задачи, нужно, чтобы множество А входило в множество В (). Это условие выполнится тогда и только тогда, когда .

Ответ: a Є (–∞; –3)U (3; +∞).

Пример 4. Найти все значения a , при которых неравенство
выполняется для всех x из отрезка .

Решение:

Дробь – меньше нуля между корнями, поэтому надо выяснить, какой корень больше.

–3a + 2 < 2a + 4
и –3a + 2 > 2a + 4
. Т.о., при
x Є (–3a + 2; 2a + 4) и чтобы неравенство выполнялось для всех x из отрезка , нужно, чтобы

При
x Є (2a + 4; –3a + 2) и чтобы неравенство выполнялось для всех x из отрезка , нужно, чтобы

При a = – (когда корни совпадают) решений нет, т.к. в этом случае неравенство приобретает вид: .

Ответ:
.

Пример 5. а неравенство справедливо при всех отрицательных значениях х ?

Решение:

Функция монотонно возрастает, если коэффициент при x неотрицательный, и она монотонно убывает, если коэффициент при x отрицательный.

Выясним знак коэффициента при

a ≤ –3,

a ≥ 1; (a ² + 2 a – 3) < 0 <=> –3 < a < 1.

a ≤ –3,

Пусть a ≥ 1. Тогда функция f (x ) монотонно не убывает, и условие задачи будет выполнено, если f (x ) ≤ 0 <=> 3a ² – a – 14 ≤ 0 <=>
.

a ≤ –3,

Вместе с условиями a ≥ 1; получим:

Пусть –3 < a < 1. Тогда функция f (x ) монотонно убывает, и условие задачи никогда не может быть выполнено.

Ответ :
.

2. Квадратные уравнения и неравенства с параметрами

Квадратичная функция:
.

В множестве действительных чисел это уравнение исследуется по следующей схеме.

Пример 1 . При каких значениях a уравнение x ² – ax + 1 = 0 не имеет действительных корней?

Решение:

x ² – ax + 1 = 0

D = a ² – 4 · 1 = a ² – 4


a ² – 4 < 0 + – +

( a – 2)( a + 2) < 0 –2 2

Ответ : при a Є (–2; 2)

Пример 2. При каких значениях а уравнение а (х ² – х + 1) = 3 х + 5 имеет два различных действительных корня?

Решение:

а (х ² – х + 1) = 3 х + 5, а ≠ 0

ах ² – ах+ а – 3 х – 5 = 0

ах ² – ( а + 3) х + а – 5 = 0

D = ( a +3)² – 4 a ( a – 5) = a ² +6 a + 9 – 4 a ² + 20 a = –3 a ² + 26 a + 9

3 a ² + 26 a + 9 > 0

3 a ² – 26 a – 9 < 0

D = 26² – 4 · 3 · (–9) = 784

a 1 =
; a 2 =
+ – +

0 9

Ответ: при a Є (–1/3; 0) U (0; 9)

Пример 3. Решить уравнение
.

Решение:



ОДЗ : x ≠1, x a

x – 1 + x a = 2, 2 x = 3 + a ,

1)
; 3 + a ≠ 2; a ≠ –1

2)
; 3 +
a ≠ 2 a ; a ≠ 3

Ответ:
при a Є (–∞; –1) U (–1; 3) U (3; +∞);

решений нет при a = –1; 3 .

Пример 4 . Решить уравнение | x ²–2 x –3 | = a .

Решение:

Рассмотрим функции y = | x ²–2 x –3 | и y = a .

При a < 0 нет решений;
при a = 0 и a > 4 два решения;
при 0 < a < 4 – четыре решения;
при a = 4 – три решения.

Ответ:

при a < 0 нет решений;
при a = 0 и a > 4 два решения;
при 0 < a < 4 – четыре решения;
при a = 4 – три решения.

Пример 5. Найти все значения a , при каждом из которых уравнение | x ²–( a +2) x +2 a | = | 3 x –6 |
имеет ровно два корня. Если таких значений a больше одного, в ответе укажите их произведение.

Решение:

Разложим квадратный трехчлен x ²–( a +2) x +2 a на множители.
;
;
;

Получим | ( x –2)( x a ) | = 3 | x –2 |.
Это уравнение равносильно совокупности

Поэтому данное уравнение имеет ровно два корня, если a + 3 = 2 и a – 3 = 2.
Отсюда находим, что искомыми значениями a являются a 1 = –1; a 2 = 5; a 1 · a 2 = –5.

Ответ: –5.

Пример 6. Найти все значения a , при которых корни уравнения ax ² – 2( a + 1) x a + 5 = 0 положительны .

Решение:

Контрольная точка a = 0, т.к. меняет суть уравнения.

1. a = 0 –2x + = 0;

Ответ: a Є U .

Пример 7. При каких значениях параметра a уравнение | x ² – 4 x + 3 | = ax имеет 3 корня.

Решение:

Построим графики функций y = | x ² – 4 x + 3 | и y = ax .

На отрезке построен график функции
.
Данное уравнение будет иметь три корня, если график функции y = ax будет являться касательной к графику y = x ²+ 4 x – 3 на
отрезке .

Уравнение касательной имеет вид y = f (x 0 ) + f ’(x 0 )(x x 0 ),



Т.к. уравнение касательной y = a , получим систему уравнений

Т.к. x 0 Є ,

Ответ: при a = 4 – 2
.

Квадратные неравенства с параметрами

Пример. Найдите все значения параметра a , при каждом из которых среди решений неравенства
нет ни одной точки отрезка .

Решение:

Сначала решим неравенство при всех значениях параметра, а потом найдем те из них, для которых среди решений нет ни одной точки отрезка .
Пусть
, ax = t ²

t ≥ 0

При такой замене переменных ОДЗ неравенства выполняется автоматически. x можно выразить через t , если a ≠ 0. Поэтому случай, когда a = 0, рассмотрим отдельно.
1.Пусть a = 0, тогда х > 0, и заданный отрезок является решением.
2.Пусть a ≠ 0, тогда
и неравенство
примет вид
,

Решение неравенства зависит от значений a , поэтому придется рассмотреть два случая.
1) Если a >0, то
при
, или в старых переменных,

Решение не содержит ни одной точки заданного отрезка , тогда и только тогда, когда выполнены условия a ≤ 7,

16a ≥ 96. Отсюда, a Є .
2). Если а < 0, то
;
; t Є (4a ; a ). Так как t ≥ 0, то решений нет.

Ответ: .

    Иррациональные уравнения с параметрами

При решении иррациональных уравнений и неравенств с параметром, во-первых, следует учитывать область допустимых значений. Во-вторых, если обе части неравенства – неотрицательные выражения, то такое неравенство можно возводить в квадрат с сохранением знака неравенства.
Во многих случаях иррациональные уравнения и неравенства после замены переменных сводятся к квадратным.

Пример 1. Решить уравнение
.

Решение:

ОДЗ: x + 1 ≥ 0, x ≥ –1, a ≥ 0.

x + 1 = a ².

Если x = a ² – 1, то условие выполняется.

Ответ: x = a ² – 1 при а ≥ 0; решений нет при a < 0.

Пример 2. Решить уравнение
.

Решение:

ОДЗ: x + 3 ≥ 0, x ≥ –3,

a – x ≥ 0; x a ;

x + 3 = a – x ,

2x = a – 3,

<=>
<=>
<=> a ≥ –3.

Ответ:
при a ≥ –3; решений нет при a < –3.

Пример 3. Сколько корней имеет уравнение
в зависимости от значений параметра а ?

Решение:

Область допустимых значений уравнения: x Є [–2; 2]

Построим графики функций. График первой функции – это верхняя половина окружности x ² + y ² = 4. График второй функции – биссектрисы первого и второго координатных углов. Из графика первой функции вычтем график второй и получим график функции
. Если заменить у на а , то последний график функции есть множество точек (х; а), удовлетворяющих исходному уравнению.

По графику видим ответ.

Ответ: при а Є (–∞; –2) U (1; +∞), корней нет;

при а Є [–2; 2), два корня;

при а = 1, один корень.

Пример 4. При каких значениях параметра а уравнение
имеет единственное решение?

Решение:

1 способ (аналитический):

Ответ:

2 способ (графический):

Ответ: при а ≥ –2 уравнение имеет единственное решение

Пример 5. При каких значениях параметра а уравнение = 2 + х имеет единственное решение.

Решение:

Рассмотрим графический вариант решения данного уравнения, то есть построим две функции:
у 1 = 2 + х и у 2 =

Первая функция является линейной и проходит через точки (0; 2) и (–2; 0).
График второй функции содержит параметр. Рассмотрим сначала график этой функции при а = 0 (рис.1). При изменении значения параметра график будет передвигаться по оси ОХ на соответсвующее значение влево (при положительных а ) или вправо (при отрицательных а ) (рис.2)



Из рисунка видно, что при а < –2 графики не пересекают друг друга, а следовательно не имеют общих решений. Если же значение параметра а больше либо равно –2, то графики имеют одну точку пересечения, а следовательно одно решение.

Ответ: при a ≥ –2 уравнение имеет единственное решение.

    Тригонометрические уравнения с параметрами.

Пример 1. Решите уравнение sin (– x + 2 x – 1) = b + 1.

Решение:


Учитывая нечетность функции
, данное уравнение сведем к равносильному
.

1. b = –1

3. b =–2

4. | b + 1| > 1

Решений нет.

5. b Є(–1; 0)

6. b Є(–2; –1)

Пример 2. Найдите все значения параметра p, при которых уравнение
не имеет решений.

Решение:

Выразим cos 2x через sinx .

Пусть
тогда задача свелась к нахождению всех значений p , при которых уравнение не имеет решений на [–1; 1]. Уравнение алгоритмически не решается, поэтому решим задачу, используя график. Запишем уравнение в виде , и теперь эскиз графика левой части
строится несложно.
Уравнение не имеет решений, если прямая y = p + 9 не пересекает график на отрезке [–1; 1], т. е.

Ответ: p Є (–∞; –9) U (17; +∞).

Системы уравнений с параметрами

    Системы двух линейных уравнений с параметрами

Система уравнений

Решениями системы двух линейных уравненийявляются точки пересечения двух прямых: и .

Возможны 3 случая:

1. Прямые не параллельны . Тогда и их нормальные вектора не параллельны, т.е. . В этом случае система имеет единственное решение.

2. Прямые параллельны и не совпадают. Тогда и их нормальные вектора параллельны, но сдвиги различны, т.е. .

В этом случае система решений не имеет .

3. Прямые совпадают. Тогда их нормальные вектора параллельны и сдвиги совпадают, т.е. . В этом случае система имеет бесконечно много решений – все точки прямой.



Похожие публикации