Прямоугольной матрицей называется. Виды матриц

В данной теме рассмотрим понятие матрицы, а также виды матриц. Так как в данной теме немало терминов, то я добавлю краткое содержание, чтобы ориентироваться в материале было проще.

Определение матрицы и её элемента. Обозначения.

Матрица - это таблица из $m$ строк и $n$ столбцов. Элементами матрицы могут быть объекты совершенно разнообразной природы: числа, переменные или, к примеру, иные матрицы. Например, матрица $\left(\begin{array} {cc} 5 & 3 \\ 0 & -87 \\ 8 & 0 \end{array} \right)$ содержит 3 строки и 2 столбца; элементами её являются целые числа. Матрица $\left(\begin{array} {cccc} a & a^9+2 & 9 & \sin x \\ -9 & 3t^2-4 & u-t & 8\end{array} \right)$ содержит 2 строки и 4 столбца.

Разные способы записи матриц: показать\скрыть

Матрица может быть записана не только в круглых, но и в квадратных или двойных прямых скобках. Т.е., указанные ниже записи означают одну и ту же матрицу:

$$ \left(\begin{array} {cc} 5 & 3 \\ 0 & -87 \\ 8 & 0 \end{array} \right);\;\; \left[ \begin{array} {cc} 5 & 3 \\ 0 & -87 \\ 8 & 0 \end{array} \right]; \;\; \left \Vert \begin{array} {cc} 5 & 3 \\ 0 & -87 \\ 8 & 0 \end{array} \right \Vert $$

Произведение $m\times n$ называют размером матрицы . Например, если матрица содержит 5 строк и 3 столбца, то говорят о матрице размера $5\times 3$. Матрица $\left(\begin{array}{cc} 5 & 3\\0 & -87\\8 & 0\end{array}\right)$ имеет размер $3 \times 2$.

Обычно матрицы обозначаются большими буквами латинского алфавита: $A$, $B$, $C$ и так далее. Например, $B=\left(\begin{array} {ccc} 5 & 3 \\ 0 & -87 \\ 8 & 0 \end{array} \right)$. Нумерация строк идёт сверху вниз; столбцов - слева направо. Например, первая строка матрицы $B$ содержит элементы 5 и 3, а второй столбец содержит элементы 3, -87, 0.

Элементы матриц обычно обозначаются маленькими буквами. Например, элементы матрицы $A$ обозначаются $a_{ij}$. Двойной индекс $ij$ содержит информацию о положении элемента в матрице. Число $i$ - это номер строки, а число $j$ - номер столбца, на пересечении которых находится элемент $a_{ij}$. Например, на пересечении второй строки и пятого столбца матрицы $A=\left(\begin{array} {cccccc} 51 & 37 & -9 & 0 & 9 & 97 \\ 1 & 2 & 3 & 41 & 59 & 6 \\ -17 & -15 & -13 & -11 & -8 & -5 \\ 52 & 31 & -4 & -1 & 17 & 90 \end{array} \right)$ расположен элемент $a_{25}=59$:

Точно так же на пересечении первой строки и первого столбца имеем элемент $a_{11}=51$; на пересечении третьей строки и второго столбца - элемент $a_{32}=-15$ и так далее. Замечу, что запись $a_{32}$ читается как "а три два", но не "а тридцать два".

Для сокращённого обозначения матрицы $A$, размер которой равен $m\times n$, используется запись $A_{m\times n}$. Можно записать и несколько более развёрнуто:

$$ A_{m\times n}=(a_{ij}) $$

где запись $(a_{ij})$ означает обозначение элементов матрицы $A$. В полностью развёрнутом виде матрицу $A_{m\times n}=(a_{ij})$ можно записать так:

$$ A_{m\times n}=\left(\begin{array}{cccc} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{m1} & a_{m2} & \ldots & a_{mn} \end{array} \right) $$

Введём еще один термин - равные матрицы .

Две матрицы одинакового размера $A_{m\times n}=(a_{ij})$ и $B_{m\times n}=(b_{ij})$ называются равными , если их соответствующие элементы равны, т.е. $a_{ij}=b_{ij}$ для всех $i=\overline{1,m}$ и $j=\overline{1,n}$.

Пояснение к записи $i=\overline{1,m}$: показать\скрыть

Запись "$i=\overline{1,m}$" означает, что параметр $i$ изменяется от 1 до m. Например, запись $i=\overline{1,5}$ говорит о том, что параметр $i$ принимает значения 1, 2, 3, 4, 5.

Итак, для равенства матриц требуется выполнение двух условий: совпадение размеров и равенство соответствующих элементов. Например, матрица $A=\left(\begin{array}{cc} 5 & 3\\0 & -87\\8 & 0\end{array}\right)$ не равна матрице $B=\left(\begin{array}{cc} 8 & -9\\0 & -87 \end{array}\right)$, поскольку матрица $A$ имеет размер $3\times 2$, а размер матрицы $B$ составляет $2\times 2$. Также матрица $A$ не равна матрице $C=\left(\begin{array}{cc} 5 & 3\\98 & -87\\8 & 0\end{array}\right)$, поскольку $a_{21}\neq c_{21}$ (т.е. $0\neq 98$). А вот для матрицы $F=\left(\begin{array}{cc} 5 & 3\\0 & -87\\8 & 0\end{array}\right)$ можно смело записать $A=F$ поскольку и размеры, и соответствующие элементы матриц $A$ и $F$ совпадают.

Пример №1

Определить размер матрицы $A=\left(\begin{array} {ccc} -1 & -2 & 1 \\ 5 & 9 & -8 \\ -6 & 8 & 23 \\ 11 & -12 & -5 \\ 4 & 0 & -10 \\ \end{array} \right)$. Указать, чему равны элементы $a_{12}$, $a_{33}$, $a_{43}$.

Данная матрица содержит 5 строк и 3 столбца, поэтому размер её $5\times 3$. Для этой матрицы можно использовать также обозначение $A_{5\times 3}$.

Элемент $a_{12}$ находится на пересечении первой строки и второго столбца, поэтому $a_{12}=-2$. Элемент $a_{33}$ находится на пересечении третьей строки и третьего столбца, поэтому $a_{33}=23$. Элемент $a_{43}$ находится на пересечении четвертой строки и третьего столбца, поэтому $a_{43}=-5$.

Ответ : $a_{12}=-2$, $a_{33}=23$, $a_{43}=-5$.

Виды матриц в зависимости от их размера. Главная и побочная диагонали. След матрицы.

Пусть задана некая матрица $A_{m\times n}$. Если $m=1$ (матрица состоит из одной строки), то заданную матрицу называют матрица-строка . Если же $n=1$ (матрица состоит из одного столбца), то такую матрицу называют матрица-столбец . Например, $\left(\begin{array} {ccccc} -1 & -2 & 0 & -9 & 8 \end{array} \right)$ - матрица-строка, а $\left(\begin{array} {c} -1 \\ 5 \\ 6 \end{array} \right)$ - матрица-столбец.

Если для матрицы $A_{m\times n}$ верно условие $m\neq n$ (т.е. количество строк не равно количеству столбцов), то часто говорят, что $A$ - прямоугольная матрица. Например, матрица $\left(\begin{array} {cccc} -1 & -2 & 0 & 9 \\ 5 & 9 & 5 & 1 \end{array} \right)$ имеет размер $2\times 4$, т.е. содержит 2 строки и 4 столбца. Так как количество строк не равно количеству столбцов, то эта матрица является прямоугольной.

Если для матрицы $A_{m\times n}$ верно условие $m=n$ (т.е. количество строк равно количеству столбцов), то говорят, что $A$ - квадратная матрица порядка $n$. Например, $\left(\begin{array} {cc} -1 & -2 \\ 5 & 9 \end{array} \right)$ - квадратная матрица второго порядка; $\left(\begin{array} {ccc} -1 & -2 & 9 \\ 5 & 9 & 8 \\ 1 & 0 & 4 \end{array} \right)$ - квадратная матрица третьего порядка. В общем виде квадратную матрицу $A_{n\times n}$ можно записать так:

$$ A_{n\times n}=\left(\begin{array}{cccc} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{n1} & a_{n2} & \ldots & a_{nn} \end{array} \right) $$

Говорят, что элементы $a_{11}$, $a_{22}$, $\ldots$, $a_{nn}$ находятся на главной диагонали матрицы $A_{n\times n}$. Эти элементы называются главными диагональными элементами (или просто диагональными элементами). Элементы $a_{1n}$, $a_{2 \; n-1}$, $\ldots$, $a_{n1}$ находятся на побочной (второстепенной) диагонали ; их называют побочными диагональными элементами . Например, для матрицы $C=\left(\begin{array}{cccc}2&-2&9&1\\5&9&8& 0\\1& 0 & 4 & -7 \\ -4 & -9 & 5 & 6\end{array}\right)$ имеем:

Элементы $c_{11}=2$, $c_{22}=9$, $c_{33}=4$, $c_{44}=6$ являются главными диагональными элементами; элементы $c_{14}=1$, $c_{23}=8$, $c_{32}=0$, $c_{41}=-4$ - побочные диагональные элементы.

Сумма главных диагональных элементов называется следом матрицы и обозначается $\Tr A$ (или $\Sp A$):

$$ \Tr A=a_{11}+a_{22}+\ldots+a_{nn} $$

Например, для матрицы $C=\left(\begin{array} {cccc} 2 & -2 & 9 & 1\\5 & 9 & 8 & 0\\1 & 0 & 4 & -7\\-4 & -9 & 5 & 6 \end{array}\right)$ имеем:

$$ \Tr C=2+9+4+6=21. $$

Понятие диагональных элементов используется также и для неквадратных матриц. Например, для матрицы $B=\left(\begin{array} {ccccc} 2 & -2 & 9 & 1 & 7 \\ 5 & -9 & 8 & 0 & -6 \\ 1 & 0 & 4 & -7 & -6 \end{array} \right)$ главными диагональными элементами будут $b_{11}=2$, $b_{22}=-9$, $b_{33}=4$.

Виды матриц в зависимости от значений их элементов.

Если все элементы матрицы $A_{m\times n}$ равны нулю, то такая матрица называется нулевой и обозначается обычно буквой $O$. Например, $\left(\begin{array} {cc} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array} \right)$, $\left(\begin{array} {ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right)$ - нулевые матрицы.

Пусть матрица $A_{m\times n}$ имеет такой вид:

Тогда данную матрицу называют трапециевидной . Она может и не содержать нулевых строк, но уж если они есть, то располагаются в низу матрицы. В более общем виде трапециевидную матрицу можно записать так:

Повторюсь, наличие нулевых строк в конце не является обязательным. Т.е. формально можно выделить такие условия для трапециевидной матрицы:

  1. Все элементы, расположенные ниже главной диагонали, равны нулю.
  2. Все элементы от $a_{11}$ до $a_{rr}$, лежащие на главной диагонали, не равны нулю: $a_{11}\neq 0, \; a_{22}\neq 0, \ldots, a_{rr}\neq 0$.
  3. Либо все элементы последних $m-r$ строк равны нулю, либо $m=r$ (т.е. нулевых строк нету вообще).

Примеры трапециевидных матриц:

Перейдём к следующему определению. Матрицу $A_{m\times n}$ называют ступенчатой , если она удовлетворяет таким условиям:


Например, ступенчатыми матрицами будут:

Для сравнения, матрица $\left(\begin{array} {cccc} 2 & -2 & 0 & 1\\0 & 0 & 8 & 7\\0 & 0 & 4 & -7\\0 & 0 & 0 & 0 \end{array}\right)$ не является ступенчатой, поскольку у третьей строки нулевая часть такая же, как и у второй строки. Т.е., нарушается принцип "чем ниже строка - тем больше нулевая часть". Добавлю, что трапециевидная матрица есть частный случай ступенчатой матрицы.

Перейдём к следующему определению. Если все элементы квадратной матрицы, расположенные под главной диагональю, равны нулю, то такую матрицу называют верхней треугольной матрицей . Например, $\left(\begin{array} {cccc} 2 & -2 & 9 & 1 \\ 0 & 9 & 8 & 0 \\ 0 & 0 & 4 & -7 \\ 0 & 0 & 0 & 6 \end{array} \right)$ - верхняя треугольная матрица. Заметьте, что в определении верхней треугольной матрицы ничего не сказано про значения элементов, расположенных над главной диагональю или на главной диагонали. Они могут быть нулевыми или нет, - это несущественно. Например, $\left(\begin{array} {ccc} 0 & 0 & 9 \\ 0 & 0 & 0\\ 0 & 0 & 0 \end{array} \right)$ - тоже верхняя треугольная матрица.

Если все элементы квадратной матрицы, расположенные над главной диагональю, равны нулю, то такую матрицу называют нижней треугольной матрицей . Например, $\left(\begin{array} {cccc} 3 & 0 & 0 & 0 \\ -5 & 1 & 0 & 0 \\ 8 & 2 & 1 & 0 \\ 5 & 4 & 0 & 6 \end{array} \right)$ - нижняя треугольная матрица. Заметьте, что в определении нижней треугольной матрицы ничего не сказано про значения элементов, расположенных под или на главной диагонали. Они могут быть нулевыми или нет, - это неважно. Например, $\left(\begin{array} {ccc} -5 & 0 & 0 \\ 0 & 0 & 0\\ 0 & 0 & 9 \end{array} \right)$ и $\left(\begin{array} {ccc} 0 & 0 & 0 \\ 0 & 0 & 0\\ 0 & 0 & 0 \end{array} \right)$ - тоже нижние треугольные матрицы.

Квадратная матрица называется диагональной , если все элементы этой матрицы, не лежащие на главной диагонали, равны нулю. Пример: $\left(\begin{array} {cccc} 3 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 6 \end{array} \right)$. Элементы на главной диагонали могут быть любыми (равными нулю или нет), - это несущественно.

Диагональная матрица называется единичной , если все элементы этой матрицы, расположенные на главной диагонали, равны 1. Например, $\left(\begin{array} {cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)$ - единичная матрица четвёртого порядка; $\left(\begin{array} {cc} 1 & 0 \\ 0 & 1 \end{array}\right)$ - единичная матрица второго порядка.

Матрица обозначается заглавными латинскими буквами (А , В , С,. ..).

Определение 1 . Прямоугольная таблица вида ,

состоящая из m строк и n столбцов, называется матрицей .

Элемент матрицы, i – номер строки, j – номер столбца.

Виды матриц:

элементов, стоящих на главной диагонали:

trA=a 11 +a 22 +a 33 +…+a nn .

§2. Определители 2, 3 и n-го порядка

Пусть даны две квадратные матрицы:

Определение 1 . Определителем второго порядка матрицы А 1 называется число, обозначаемое ∆ и равное , где

Пример . Вычислить определитель 2-го порядка:

Определение 2 . Определителем 3-го порядка квадратной матрицы А 2 называется число вида:

Это один из способов вычисления определителя.

Пример. Вычислить

Определение 3 . Если определитель состоит из n-строк и n-столбцов, то он называется определителем n-го порядка.

Свойства определителей:

    Определитель не меняется при транспонировании (т.е. если в нем строки и столбцы поменять местами с сохранением порядка следования).

    Если в определителе поменять местами какие-либо две строки или два столбца, то определитель изменит только знак.

    Общий множитель какой-либо строки (столбца) можно выносить за знак определителя.

    Если все элементы какой-либо строки (столбца) определителя равны нулю, то определитель равен нулю.

    Определитель равен нулю, если элементы каких-либо двух строк равны или пропорциональны.

    Определитель не изменится, если к элементам какой-либо строки (столбца) прибавить соответствующие элементы другой строки (столбца), умноженные на одно и то же число.

Пример.

Определение 4. Определитель, полученный из данного путем вычеркивания столбца и строки, называется минором соответствующего элемента. М ij элемента a ij .

Определение 5. Алгебраическим дополнением элемента а ij , называется выражение

§3. Действия над матрицами

Линейные операции

1)При сложении матриц складываются их одноименные элементы.

    При вычитании матриц вычитаются их одноименные элементы.

    При умножении матрицы на число каждый элемент матрицы умножается на это число:

3.2.Умножение матриц.

Произведение матрицы А на матрицу В есть новая матрица , элементы которой равны сумме произведений элементовi-той строки матрицы А на соответствующие элементы j-го столбца матрицы В . Произведение матрицы А на матрицу В можно находить только в том случае, если число столбцов матрицы А равно числу строк матрицы В. В противном случае, произведение невозможно.

Замечание:

(не подчиняется свойству коммутативности)

§ 4. Обратная матрица

Обратная матрица существует только для квадратной матрицы, причем матрица должна быть невырожденной.

Определение 1. Матрица А называется невырожденной , если определитель этой матрицы не равен нулю

Определение 2. А -1 называется обратной матрицей для данной невырожденной квадратной матрицы А , если при умножении этой матрицы на данную как справа, так слева получается единичная матрица.

Алгоритм вычисления обратной матрицы

1 способ (с помощью алгебраических дополнений)

Пример 1:

Матрицей размерности называется таблица чисел , содержащая строк и столбцов. Числа называются элементами этой матрицы, где – номер строки, – номер столбца, на пересечении которых стоит данный элемент. Матрица, содержащая строк и столбцов, имеет вид: .

Виды матриц:

1) при – квадратная , причем называют порядком матрицы ;

2) квадратная матрица, у которой все недиагональные элементы равны нулю

диагональная ;

3) диагональная матрица, у которой все диагональные элементы равны

единице – единичная и обозначается ;

4) при – прямоугольная ;

5) при – матрица-строка (вектор-строка);

6) при – матрица-столбец (вектор-столбец);

7) при всех – нулевая матрица.

Заметим, что основной числовой характеристикой квадратной матрицы является ее определитель. Определитель, соответствующий матрице -го порядка, также имеет -ый порядок.

Определителем матрицы 1-го порядка называется число .

Определителем матрицы 2-го порядка называется число . (1.1)

Определителем матрицы 3-го порядка называется число . (1.2)

Приведем необходимые для дальнейшего изложения определения.

Минором М ij элемента а ij матрицы n- гопорядка А называется определитель матрицы (n-1)- гопорядка, полученной из матрицы А путем вычеркивания i -ой строки и j -го столбца.

Алгебраическим дополнением А ij элемента а ij матрицы n - гопорядка А называется минор этого элемента, взятый со знаком .

Сформулируем основные свойства определителей, присущие определителям всех порядков и упрощающие их вычисление.

1. При транспонировании матрицы ее определитель не меняется.

2. При перестановке двух строк (столбцов) матрицы ее определитель меняет знак.

3. Определитель, имеющий две пропорциональные (равные) строки (столбца), равен нулю.

4. Общий множитель элементов какой-либо строки (столбца) определителя можно вынести за знак определителя.

5. Если элементы какой-либо строки (столбца) определителя представляют собой сумму двух слагаемых, то определитель может быть разложен на сумму двух соответствующих определителей.

6. Определитель не изменится, если к элементам любой его строки (столбца) прибавить соответствующие элементы другой его строки (столбца), предварительно умноженные на любое число.

7. Определитель матрицы равен сумме произведений элементов любой его строки (столбца) на алгебраические дополнения этих элементов.

Поясним данное свойство на примере определителя 3-го порядка. В данном случае свойство 7 означает, что – разложение определителя по элементам 1-ой строки. Заметим, что для разложения выбирают ту строку (столбец), где есть нулевые элементы, так как соответствующие им слагаемые в разложении обращаются в ноль.

Свойство 7 представляет собой теорему о разложении определителя, сформулированную Лапласом.

8. Сумма произведений элементов какой-либо строки (столбца) определителя на алгебраические дополнения соответствующих элементов другой его строки (столбца) равна нулю.

Последнее свойство часто называют псевдоразложением определителя.

Вопросы для самопроверки.

1. Что называется матрицей?

2. Какая матрица называется квадратной? Что понимается под ее порядком?

3. Какая матрица называется диагональной, единичной?

4. Какая матрица называется матрицей-строкой и матрицей-столбцом?

5. Что является основной числовой характеристикой квадратной матрицы?

6. Какое число называется определителем 1-го, 2-го и 3-го порядка?

7. Что называется минором и алгебраическим дополнением элемента матрицы?

8. Каковы основные свойства определителей?

9. С помощью какого свойства можно вычислить определитель любого порядка?

Действия над матрицами (схема 2)

На множестве матриц определен ряд операций, основными среди которых являются следующие:

1) транспонирование – замена строк матрицы на столбцы, а столбцов на строки;

2) умножение матрицы на число производится поэлементно, то есть , где , ;

3) сложение матриц, определенное только для матриц одной размерности;

4) умножение двух матриц, определенное только для согласованных матриц.

Суммой (разностью) двух матриц называется такая результирующая матрица, каждый элемент которой равен сумме (разности) соответствующих элементов матриц-слагаемых.

Две матрицы называются согласованными , если количество столбцов первой из них равно количеству строк другой. Произведением двух согласованных матриц и называется такая результирующая матрица , что , (1.4)

где , . Отсюда следует, что элемент -ой строки и -го столбца матрицы равен сумме попарных произведений элементов -ой строки матрицы на элементы -го столбца матрицы .

Произведение матриц не коммутативно, то есть А . В В . А. Исключение составляет, например, произведение квадратных матриц на единичную А . Е = Е . А.

Пример 1.1. Перемножить матрицы A и B, если:

.

Решение. Так как матрицы согласованные (количество столбцов матрицы равно количеству строк матрицы ), то воспользуемся формулой (1.4):

Вопросы для самопроверки.

1. Какие действия осуществляются над матрицами?

2. Что называется суммой (разностью) двух матриц?

3. Что называется произведением двух матриц?

Метод Крамера решения квадратных систем линейных алгебраических уравнений (схема 3)

Дадим ряд необходимых определений.

Система линейных уравнений называется неоднородной , если хотя бы один ее свободный член отличен от нуля, и однородной , если все ее свободные члены равны нулю.

Решением системы уравнений называется упорядоченный набор чисел, который, будучи подставленным вместо переменных в систему, обращает каждое ее уравнение в тождество.

Система уравнений называется совместной , если она имеет хотя бы одно решение, и несовместной , если она решений не имеет.

Совместная система уравнений называется определенной , если она имеет единственное решение, и неопределенной , если она имеет более одного решения.

Рассмотрим неоднородную квадратную систему линейных алгебраических уравнений, имеющую следующий общий вид:

. (1.5) Главной матрицей системы линейных алгебраических уравнений называется матрица, составленная из коэффициентов, стоящих при неизвестных: .

Определитель главной матрицы системы называется главным определителем и обозначается .

Вспомогательный определитель получается из главного определителя путем замены -го столбца на столбец свободных членов.

Теорема 1.1 (теорема Крамера). Если главный определитель квадратной системы линейных алгебраических уравнений отличен от нуля, то система имеет единственное решение, вычисляемое по формулам:

Если главный определитель , то система либо имеет бесконечное множество решений (при всех нулевых вспомогательных определителях), либо вообще решения не имеет (при отличии от нуля хотя бы одного из вспомогательных определителей)

В свете приведенных выше определений теорема Крамера может быть сформулирована иначе: если главный определитель системы линейных алгебраических уравнений отличен от нуля, то система является совместной определенной и при этом ; если главный определитель нулевой, то система является либо совместной неопределенной (при всех ), либо несовместной (при отличии хотя бы одного из от нуля).

После этого следует провести проверку полученного решения.

Пример 1.2. Решить систему методом Крамера

Решение. Так как главный определитель системы

отличен от нуля, то система имеет единственное решение. Вычислим вспомогательные определители

Воспользуемся формулами Крамера (1.6): , ,

Вопросы для самопроверки.

1. Что называется решением системы уравнений?

2. Какая система уравнений называется совместной, несовместной?

3. Какая система уравнений называется определенной, неопределенной?

4. Какая матрица системы уравнений называется главной?

5. Как вычислить вспомогательные определители системы линейных алгебраических уравнений?

6. В чем состоит суть метода Крамера решения систем линейных алгебраических уравнений?

7. Какой может быть система линейных алгебраических уравнений, если ее главный определитель равен нулю?

Решение квадратных систем линейных алгебраических уравнений методом обратной матрицы (схема 4)

Матрица, имеющая отличный от нуля определитель, называется невырожденной ; имеющая определитель равный нулю – вырожденной .

Матрица называется обратной для заданной квадратной матрицы , если при умножении матрицы на обратную ей как справа, так и слева, получается единичная матрица, то есть . (1.7)

Заметим, что в данном случае произведение матриц и коммутативно.

Теорема 1.2. Необходимым и достаточным условием существования обратной матрицы для заданной квадратной матрицы, является отличие от нуля определителя заданной матрицы

Если главная матрица системы оказалась при проверке вырожденной, то для нее не существует обратной, и рассматриваемый метод применить нельзя.

Если главная матрица невырожденная, то есть определитель 0, то для нее можно найти обратную матрицу по следующему алгоритму.

1. Вычислить алгебраические дополнения всех элементов матрицы .

2. Выписать найденные алгебраические дополнения в матрицу транспонированно.

3. Составить обратную матрицу по формуле: (1.8)

4. Сделать проверку правильности найденной матрицы А-1 согласно формуле (1.7). Заметим, что данная проверка может быть включена в итоговую проверку самого решения системы.

Система (1.5) линейных алгебраических уравнений может быть представлена в виде матричного уравнения: , где – главная матрица системы, – столбец неизвестных, – столбец свободных членов. Умножим это уравнение слева на обратную матрицу , получим:

Так как по определению обратной матрицы , то уравнение принимает вид или . (1.9)

Таким образом, чтобы решить квадратную систему линейных алгебраических уравнений нужно столбец свободных членов умножить слева на матрицу, обратную для главной матрицы системы. После этого следует сделать проверку полученного решения.

Пример 1.3. Решить систему методом обратной матрицы

Решение. Вычислим главный определитель системы

. Следовательно, матрица невырожденная и обратная к ней матрица существует.

Найдём алгебраические дополнения всех элементов главной матрицы :

Запишем алгебраические дополнения транспонированно в матрицу

. Воспользуемся формулами (1.8) и (1.9) для нахождения решения системы

Вопросы для самопроверки.

1. Какая матрица называется вырожденной, невырожденной?

2. Какая матрица называется обратной для заданной? Каково условие ее существования?

3. Каков алгоритм нахождения обратной матрицы для заданной?

4. Какому матричному уравнению эквивалентна система линейных алгебраических уравнений?

5. Как решить систему линейных алгебраических уравнений с помощью обратной матрицы для главной матрицы системы?

Исследование неоднородных систем линейных алгебраических уравнений (схема 5)

Исследование любой системы линейных алгебраических уравнений начинается с преобразования ее расширенной матрицы методом Гаусса. Пусть размерность главной матрицы системы равна .

Матрица называется расширенной матрицей системы, если наряду с коэффициентами при неизвестных, она содержит столбец свободных членов. Следовательно, размерность равна .

Метод Гаусса основан на элементарных преобразованиях , к которым относятся:

– перестановка строк матрицы;

– умножение строк матрицы на отличное от руля число;

– поэлементное сложение строк матрицы;

– вычеркивание нулевой строки;

– транспонирование матрицы (в этом случае преобразования производятся по столбцам).

Элементарные преобразования приводят первоначальную систему к системе, ей эквивалентной. Системы называются эквивалентными , если они имеют одно и то же множество решений.

Рангом матрицы называется наивысший порядок отличных от нуля ее миноров. Элементарные преобразования ранга матрицы не меняют.

На вопрос о наличии решений у неоднородной системы линейных уравнений отвечает следующая теорема.

Теорема 1.3 (теорема Кронекера-Капелли). Неоднородная система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг расширенной матрицы системы равен рангу ее главной матрицы, т. е.

Обозначим количество строк, оставшихся в матрице после метода Гаусса, через (соответственно, в системе остается уравнений). Эти строки матрицы называются базисными .

Если , то система имеет единственное решение (является совместной определенной), ее матрица элементарными преобразованиями приводится к треугольному виду. Такую систему можно решить методом Крамера, с помощью обратной матрицы или универсальным методом Гаусса.

Если (количество переменных в системе больше чем уравнений), матрица элементарными преобразованиями приводится к ступенчатому виду. Такая система имеет множество решений и является совместной неопределенной. В данном случае для нахождения решений системы необходимо выполнить ряд операций.

1. Оставить в левых частях уравнений системы неизвестных (базисные переменные ), остальные неизвестных перенести в правые части (свободные переменные ). После разделения переменных на базисные и свободные система принимает вид:

. (1.10)

2. Из коэффициентов при базисных переменных составить минор (базисный минор ), который должен быть отличен от нуля.

3. Если базисный минор системы (1.10) равен нулю, то одну из базисных переменных заменить на свободную; полученный базисный минор проверить на отличность от нуля.

4. Применяя формулы (1.6) метода Крамера, считая правые части уравнений их свободными членами, найти выражение базисных переменных через свободные в общем виде. Полученный при этом упорядоченный набор переменных системы является ее общим решением .

5. Придавая свободным переменным в (1.10) произвольные значения, вычислить соответствующие значения базисных переменных. Получаемый при этом упорядоченный набор значений всех переменных называется частным решением системы, соответствующим данным значениям свободных переменных. Система имеет бесконечное множество частных решений.

6. Получить базисное решение системы – частное решение, получаемое при нулевых значениях свободных переменных.

Заметим, что количество базисных наборов переменных системы (1.10) равно числу сочетаний из элементов по элементов . Так как каждому базисному набору переменных соответствует свое базисное решение, следовательно, базисных решений у системы также.

Однородная система уравнений всегда совместна, так как имеет хотя бы одно – нулевое (тривиальное) решение. Для того чтобы однородная система линейных уравнений с переменными имела ненулевые решения, необходимо и достаточно, чтобы ее главный определитель был равен нулю. Это означает, что ранг ее главной матрицы меньше числа неизвестных . В этом случае исследование однородной системы уравнений на общее и частные решения проводится аналогично исследованию неоднородной системы. Решения однородной системы уравнений обладают важным свойством: если известны два различных решения однородной системы линейных уравнений, то их линейная комбинация также является решением этой системы. Нетрудно убедиться в справедливости следующей теоремы.

Теорема 1.4. Общее решение неоднородной системы уравнений представляет собой сумму общего решения соответствующей однородной системы и некоторого частного решения неоднородной системы уравнений

Пример 1.4.

Исследовать заданную систему и найти одно частное решение:

Решение. Выпишем расширенную матрицу системы и применим к ней элементарные преобразования:

. Так как и , то по теореме 1.3 (Кронекера-Капелли) заданная система линейных алгебраических уравнений совместна. Количество переменных , т. е. , значит, система является неопределённой. Количество базисных наборов переменных системы равно

. Следовательно, базисными могут быть 6 комплектов переменных: . Рассмотрим один из них . Тогда систему, полученную в результате метода Гаусса, можно переписать в виде

. Главный определитель . С помощью метода Крамера ищем общее решение системы. Вспомогательные определители

По формулам (1.6) имеем

. Данное выражение базисных переменных через свободные представляет собой общее решение системы:

При конкретных значениях свободных переменных из общего решения получаем частное решение системы. Например, частное решение соответствует значениям свободных переменных . При получаем базисное решение системы

Вопросы для самопроверки.

1. Какая система уравнений называется однородной, неоднородной?

2. Какая матрица называется расширенной?

3. Перечислите основные элементарные преобразования матриц. Какой метод решения систем линейных уравнений основан на этих преобразованиях?

4. Что называется рангом матрицы? Каким способом можно его вычислить?

5. О чем говорит теорема Кронекера-Капелли?

6. К какому виду может быть приведена система линейных алгебраических уравнений в результате ее решения методом Гаусса? Что это означает?

7. Какие строки матрицы называются базисными?

8. Какие переменные системы называются базисными, какие свободными?

9. Какое решение неоднородной системы называется частным?

10.Какое ее решение называется базисным? Сколько базисных решений имеет неоднородная система линейных уравнений?

11.Какое решение неоднородной системы линейных алгебраических уравнений называется общим? Сформулируйте теорему об общем решении неоднородной системы уравнений.

12. Каковы основные свойства решений однородной системы линейных алгебраических уравнений?

Опр . Прямоугольная таблица, состоящая из т строк и п столбцов действительных чисел называется матрицей размера т×п . Матрицы обозначают заглавными латинскими буквами: А, В,…, а массив чисел выделяют круглыми или квадратными скобками.

Числа, входящие в таблицу, называются элементами матрицы и обозначаются малыми латинскими буквами с двойным индексом , гдеi – номер строки, j – номер столбца, на пресечении которых расположен элемент. В общем виде матрица записывается так:

Две матрицы считаются равными , если равны их соответствующие элементы.

Если число строк матрицы т равно числу ее столбцов п , то матрица называется квадратной (в противном случае – прямоугольной).


Матрица размера
называется матрицей-строкой. Матрица размера

называется матрицей-столбцом.

Элементы матрицы, имеющие равные индексы (
и т.д.), образуютглавную диагональ матрицы. Другая диагональ называется побочной.



Квадратная матрица называется диагональной , если все ее элементы, расположенные вне главной диагонали, равны нулю.

Диагональная матрица, у которой диагональные элементы равны единице, называется единичной матрицей и имеет стандартное обозначение Е:


Если все элементы матрицы, расположенные выше (или ниже) главной диагонали равны нулю, говорят, что матрица имеет треугольный вид:


§2. Операции над матрицами

1. Транспонирование матрицы – преобразование, при котором строки матрицы записывают в виде столбцов при сохранении их порядка. Для квадратной матрицы это преобразование эквивалентно симметричному отображению относительно главной диагонали:

.


2. Матрицы одинаковой размерности можно суммировать (вычитать). Суммой (разностью) матриц называется матрица той же размерности, каждый элемент которой равен сумме (разности) соответствующих элементов исходных матриц:



3. Любую матрицу можно умножать на число. Произведением матрицы на число называется матрица того же порядка, каждый элемент которой равен произведению соответствующего элемента исходной матрицы на это число:

.

4. Если число столбцов одной матрицы равно числу строк другой, то можно выполнить умножение первой матрицы на вторую. Произведением таких матриц называется матрица, каждый элемент которой равен сумме попарных произведений элементов соответствующей строки первой матрицы и элементов соответствующего столбца второй матрицы.

Следствие . Возведение матрицы в степень к >1 есть произведение матрицы А к раз. Определено только для квадратных матриц.

Пример .

Свойства операций над матрицами.

  1. (А+В)+С=А+(В+С);

    к(А+В)=кА+кВ;

    А(В+С)=АВ+АС;

    (А+В)С=АС+ВС;

    к(АВ)=(кА)В=А(кВ);

    А(ВС)=(АВ)С;

  2. (кА) Т =кА Т;

    (А+В) Т =А Т +В Т;

    (АВ) Т =В Т А Т;

Перечисленные выше свойства аналогичны свойствам операций над числами. Есть и специфические свойства матриц. К ним относится, например, отличительное свойство умножения матриц. Если произведение АВ существует, то произведение ВА

Может не существовать

Может отличаться от АВ.

Пример . Предприятие выпускает продукцию двух видов А и В и использует при этом сырье трех типов S 1 , S 2 , и S 3 . Нормы расхода сырья заданы матрицей N=
, гдеn ij – количество сырья j , расходуемого на производство единицы продукции i . План выпуска продукции задан матрицей С=(100 200), а стоимость единицы каждого вида сырья – матрицей . Определить затраты сырья, необходимые для планового выпуска продукции и общую стоимость сырья.

Решение. Затраты сырья определим как произведение матриц С и N:

Общую стоимость сырья вычислим как произведение S и Р.

Матрицы в математике - один из важнейших объектов, имеющих прикладное значение. Часто экскурс в теорию матриц начинают со слов: "Матрица - это прямоугольная таблица...". Мы начнём этот экскурс несколько с другой стороны.

Телефонные книги любого размера и с любым числом данных об абоненте - ни что иное, как матрицы. Такие матрицы имеют примерно следующий вид:

Ясно, что такими матрицами мы все пользуемся почти каждый день. Эти матрицы бывают с различным числом строк (различаются как выпущенный телефонной компанией справочник, в котором могут быть тысячи, сотни тысяч и даже миллионы строк и только что начатая Вами новая записная книжка, в которой меньше десяти строк) и столбцов (справочник должностных лиц какой-нибудь организации, в котором могут быть такие столбцы, как должность и номер кабинета и та же Ваша записная книжка, где может не быть никаких данных, кроме имени, и, таким образом, в ней только два столбца - имя и телефон).

Всякие матрицы можно складывать и умножать, а также проводить над ними другие операции, однако нет необходимости складывать и умножать телефонные справочники, от этого нет никакой пользы, к тому же можно и подвинуться рассудком.

Но очень многие матрицы можно и нужно складывать и перемножать и решать таким образом различные насущные задачи. Ниже примеры таких матриц.

Матрицы, в которых столбцы - выпуск единиц продукции того или иного вида, а строки - годы, в которых ведётся учёт выпуска этой продукции:

Можно складывать матрицы такого вида, в которых учтён выпуск аналогичной продукции различными предприятиями, чтобы получить суммарные данные по отрасли.

Или матрицы, состоящие, к примеру, из одного столбца, в которых строки - средняя себестоимость того или иного вида продукции:

Матрицы двух последних видов можно умножать, а в результате получится матрица-строка, содержащая себестоимость всех видов продукции по годам.

Матрицы, основные определения

Прямоугольная таблица, состоящая из чисел, расположенных в m строках и n столбцах, называется mn-матрицей (или просто матрицей ) и записывается так:

(1)

В матрице (1) числа называются её элементами (как и в определителе, первый индекс означает номер строки, второй – столбца, на пересечении которых стоит элемент; i = 1, 2, ..., m ; j = 1, 2, n ).

Матрица называется прямоугольной , если .

Если же m = n , то матрица называется квадратной , а число n – её порядком .

Определителем квадратной матрицы A называется определитель, элементами которого являются элементы матрицы A . Он обозначается символом |A |.

Квадратная матрица называется неособенной (или невырожденной , несингулярной ), если её определитель не равен нулю, и особенной (или вырожденной , сингулярной ), если её определитель равен нулю.

Матрицы называются равными , если у них одинаковое число строк и столбцов и все соответствующие элементы совпадают.

Матрица называется нулевой , если всё её элементы равны нулю. Нулевую матрицу будем обозначать символом 0 или .

Например,

Матрицей-строкой (или строчной ) называется 1n -матрица, а матрицей-столбцом (или столбцовой ) – m 1-матрица.

Матрица A " , которая получается из матрицы A заменой в ней местами строк и столбцов, называется транспонированной относительно матрицы A . Таким образом, для матрицы (1) транспонированной является матрица

Операция перехода к матрице A " , транспонированной относительно матрицы A , называется транспонированием матрицы A . Для mn -матрицы транспонированной является nm -матрица.

Транспонированной относительно матрицы является матрица A , то есть

(A ")" = A .

Пример 1. Найти матрицу A " , транспонированную относительно матрицы

и выяснить, равны ли определители исходной и транспонированной матриц.

Главной диагональю квадратной матрицы называется воображаемая линия, соединяющая её элементы, у которых оба индекса одинаковые. Эти элементы называются диагональными .

Квадратная матрица, у которой все элементы вне главной диагонали равны нулю, называется диагональной . Не обязательно все диагональные элементы диагональной матрицы отличны от нуля. Среди них могут быть и равные нулю.

Квадратная матрица, у которой элементы, стоящие на главной диагонали равны одному и тому же числу, отличному от нуля, а все прочие равны нулю, называется скалярной матрицей .

Единичной матрицей называется диагональная матрица, у которой все диагональные элементы равны единице. Например, единичной матрицей третьего порядка является матрица

Пример 2. Даны матрицы:

Решение. Вычислим определители данных матриц. Пользуясь правилом треугольников, найдём

Определитель матрицы B вычислим по формуле

Легко получаем, что

Следовательно, матрицы A и – неособенные (невырожденные, несингулярные), а матрица B – особенная (вырожденная, сингулярная).

Определитель единичной матрицы любого порядка, очевидно, равен единице.

Решить задачу на матрицы самостоятельно, а затем посмотреть решение

Пример 3. Даны матрицы

,

,

Установить, какие из них являются неособенными (невырожденными, несингулярными).

Применение матриц в математико-экономическом моделировании

В виде матриц просто и удобно записываются структурированные данные о том или ином объекте. Матричные модели создаются не только для хранения этих структурированных данных, но и для решения различных задач с этими данными средствами линейной алгебры.

Так, известной матричной моделью экономики является модель "затраты-выпуск", внедрённая американским экономистом русского происхождения Василием Леонтьевым. Эта модель исходит из предположения, что весь производственный сектор экономики разбит на n чистых отраслей. Каждая из отраслей выпускает продукцию только одного вида и разные отрасли выпускают разную продукцию. Из-за такого разделения труда между отраслями существуют межотраслевые связи, смысл которых состоит в том, что часть продукции каждой отрасли передаётся другим отраслям в качестве ресурса производства.

Объём продукции i -й отрасли (измеряемый определённой единицей измерения), которая была произведена за отчётный период, обозначается через и называется полным выпуском i -й отрасли. Выпуски удобно разместить в n -компонентную строку матрицы.

Количество единиц продукции i -й отрасли, которое необходимо затратить j -й отрасли для производства единицы своей продукции, обозначается и называется коэффициентом прямых затрат.



Похожие публикации