Урок «Клеточное строение листа. Устьица у растения: определение, расположение, функции

Устьица у растения — это поры, находящиеся в слоях эпидермиса. Они служат для испарения лишней воды и газообмена цветка с окружающей средой.

Впервые о них стало известно в 1675 году, когда натуралист Марчелло Мальпиги опубликовал своё открытие в работе Anatome plantarum. Однако он не смог разгадать их настоящего назначения, что послужило толчком для развития дальнейших гипотез и проведения исследований.

История изучения

В XIX веке наступил долгожданный прогресс в исследованиях. Благодаря Гуго фон Молю и Симону Швенденеру стал известен основной принцип работы устьиц и их классификация по типу строения.

Эти открытия дали мощный толчок в понимании функционирования пор, однако некоторые аспекты былых исследований продолжают изучаться до сих пор.

Строение листа

Такие части растений, как эпидермис и устьице, относятся к внутреннему устройству листа, однако сначала следует изучить его внешнее строение. Итак, лист состоит из:

  • Листовой пластины — плоской и гибкой части, отвечающей за фотосинтез, газообмен, испарение воды и вегетативное размножение (для определённых видов).
  • Основания, в котором находится служащая для роста пластины и черешка. Также с его помощью лист крепится к стеблю.
  • Прилистника — парного образования в основании, защищающего пазушные почки.
  • Черешка — сужающейся части листа, соединяющей пластинку со стеблем. Он отвечает за жизненно важные функции: ориентирование на свет и рост посредством образовательной ткани.

Внешнее строение листа может несколько различаться в зависимости от его формы и типа (простой/сложный), но все перечисленные выше части присутствуют всегда.

К внутреннему устройству относят эпидерму и устьице, а также различные формирующие ткани и жилки. Каждый из элементов имеет собственную конструкцию.

Например, внешней стороны листа состоит из живых клеток, отличных по размеру и форме. Самые поверхностные из них обладают прозрачностью, позволяющей солнечному свету проникать внутрь листа.

Более мелкие клетки, расположенные несколько глубже, содержат хлоропласты, придающие листьям зеленый цвет. За счёт своих свойств они были названы замыкающими. В зависимости от степени увлажнения они то сжимаются, то образуют меж собой устьичные щели.

Строение

Длина устьица у растения варьируется в зависимости от вида и степени получаемого им освещения. Самые крупные поры могут достигать в размере 1 см. Образуют устьице замыкающие клетки, регулирующие уровень его открытия.

Механизм их движения довольно сложен и разнится для отличных друг от друга видов растений. У большинства из них - в зависимости от водоснабжения и уровня хлоропластов - тургор тканей клеток может как понижаться, так и повышаться, тем самым регулируя открытие устьица.

Предназначение устьичной щели

Наверное, нет нужды подробно останавливаться на таком аспекте, как функции листа. Об этом знает даже школьник. А вот за что отвечают устьица? Их задача - обеспечение транспирации (процесс движения воды через растение и её испарение через наружные органы, такие как листья, стебли и цветы), что достигается за счёт работы замыкающих клеток. Этот механизм защищает растение от иссушения в жаркую погоду и не позволяет начаться процессу гниения в условиях чрезмерной влажности. Принцип его работы предельно прост: если количество жидкости в клетках недостаточно высоко, давление на стенки падает, и устьичная щель смыкается, сохраняя требуемое для поддержания жизнедеятельности содержание влаги.

И напротив, её переизбыток ведёт к усилению напора и открытию пор, через которые лишняя влага испаряется. Благодаря этому, роль устьиц в охлаждении растений также велика, поскольку температура воздуха вокруг снижается именно посредством транспирации.

Также под щелью расположена воздушная полость, служащая для газообмена. Воздух проникает в растение сквозь поры, чтобы в дальнейшем вступить в и дыхания. Лишний кислород затем выходит в атмосферу посредством всё той же устьичной щели. При этом её наличие или отсутствие часто используется для классификации растений.

Функции листа

Лист является внешним органом, с помощью которого выполняется фотосинтез, дыхание, транспирация, гуттация и вегетативное размножение. Более того, он способен накапливать влагу и органические вещества посредством устьиц, а также обеспечивать растению большую приспособляемость к сложным условиям окружающей среды.

Поскольку вода — основная внутриклеточная среда, выведение и циркуляция жидкости внутри дерева или цветка одинаково важны для его жизнедеятельности. При этом растение усваивает лишь 0,2 % всей влаги, проходящей через него, остальная же часть уходит на транспирацию и гуттацию, за счёт которых происходит передвижение растворённых минеральных солей и охлаждение.

Вегетативное размножение зачастую происходит посредством срезания и укоренения листьев цветков. Многие комнатные растения выращиваются подобным образом, поскольку только так можно сохранить чистоту сорта.

Как было сказано ранее, помогают приспособиться к различным природным условиям. Например, трансформация в колючки помогает пустынным растениям снизить испарение влаги, усики усиливают функции стебля, а большие размеры зачастую служат для сохранения жидкости и полезных веществ там, где климатические условия не позволяют подпитывать запасы регулярно.

И этот список можно продолжать бесконечно. При этом сложно не заметить, что данные функции одинаковы для листьев цветков и деревьев.

У каких растений нет устьиц?

Поскольку устьичная щель характерна для высших растений, она имеется у всех видов, и ошибочно считать её отсутствующей, даже если у дерева или цветка нет листьев. Единственное исключение из правила составляет ламинария и прочие водоросли.

Строение устьиц и их работа у хвойных, папоротников, хвощей, плавунов и отличаются от таковых у цветковых. У большинства из них днём щели открыты и активно участвуют в газообмене и транспирации; исключением являются кактусы и суккуленты, у которых поры распахнуты ночью и закрываются с наступлением утра в целях экономии влаги в засушливых регионах.

Устьица у растения, листья которого плавают на поверхности воды, расположены только в верхнем слое эпидермиса, а у "сидячих" листьев — в нижнем. У остальных разновидностей эти щели присутствуют с обеих сторон пластины.

Расположение устьица

У устьичные щели расположены с двух сторон листовой пластины, однако их количество в нижней части несколько больше, чем в верхней. Эта разница обусловлена потребностью снизить испарение влаги с хорошо освещенной поверхности листа.

Для однодольных растений не существует конкретики касательно расположения устьиц, поскольку оно зависит от направления роста пластин. Например, эпидермис листьев растений, ориентированных вертикально, содержит в себе одинаковое количество пор как в верхнем, так и в нижнем слое.

Как было сказано ранее, у плавающих листьев с нижней стороны устьичные щели отсутствуют, поскольку они впитывают влагу через кутикулу, как и полностью водные растения, у которых подобных пор нет вообще.

Устьица хвойных деревьев находятся глубоко под эндодермой, что способствует снижению способности к транспирации.

Также расположение пор различается относительно поверхности эпидермиса. Щели могут находиться вровень с остальными «кожными» клетками, уходить выше или ниже, образовывать правильные ряды или быть рассыпанными по покровной ткани хаотично.

У кактусов, сукуллентов и иных растений, листья у которых отсутствуют или видоизменились, трансформировавшись в иглы, устьица расположены на стеблях и мясистых частях.

Типы

Устьица у растения делятся на множество типов в зависимости от расположения сопровождающих клеток:

  • Аномоцитный — рассматривается как самый распространённый, где побочные частицы не отличаются от прочих, находящихся в эпидермисе. Как одну из его простых модификаций можно назвать латероцитный тип.
  • Парацитный — характеризуется параллельным примыканием сопровождающих клеток относительно устьичной щели.
  • Диацитный — имеет только две побочных частицы.
  • Анизоцитный — тип, присущий лишь цветковым растениям, с тремя сопровождающими клетками, одна из которых заметно отличается по размеру.
  • Тетрацитный — свойственен для однодольных, имеет четыре сопровождающих клетки.
  • Энциклоцитный — в нём побочные частицы смыкаются кольцом вокруг замыкающих.
  • Перицитный — для него характерно устьице, не соединенное с сопровождающей клеткой.
  • Десмоцитный — отличается от предыдущего типа только наличием сцепления щели с побочной частицей.

Здесь приведены лишь самые популярные виды.

Влияние факторов среды на внешнее строение листа

Для выживания растения крайне важна степень его приспособляемости. Например, для влажных мест характерны крупные листовые пластины и большое количество устьиц, в то время как в засушливых регионах этот механизм действует иначе. Ни цветы, ни деревья не отличаются размерами, а количество пор заметно сокращено, чтобы воспрепятствовать избыточному испарению.

Таким образом, можно проследить, как части растений под воздействием окружающей среды со временем видоизменяются, что влияет и на количество устьиц.

Вопрос 1. О каком органе пойдёт речь? Речь пойдет о листьях.

Предложи основной вопрос урока. Cравни свой вариант с авторским (с. 141). Какой орган растения может испаряет воду и усваивать свет?

Вопрос 2. Как водоросли впитывают кислород, воду и минеральные вещества? (5-й класс)

Водоросли впитывают кислород, воду и минеральные вещества всей поверхностью таллома.

Как растения используют свет? (5-й класс)

Обычно растение использует солнечный свет для переработки необходимого для его жизни углекислого газа. Благодаря хлорофиллу, веществу, которое окрашивает листья в зеленый цвет, они способны преобразовывать энергию света в химическую энергию. Химическая энергия позволяет получать из воздуха углекислый газ и воду, из которых синтезируются углеводы. Такой процесс называется фотосинтезом. Одновременно растения выделяют кислород. Углеводы соединяются между собой, образуя другое вещество, которое накапливается в корнях, и таким образом образуются вещества, необходимые для жизни и развития растения.

Что такое устьица? (5-й класс)

Устьица – щелевидные отверстия в кожице листа, окруженное двумя замыкающими клетками. Служат для газообмена и транспирации.

Листья каких растений люди заготавливают впрок и зачем?

Заготавливают листья лекарственных растений (например, подорожник, кипрей, мать-и-мачеха и др.) для приготовления в последующем чая, отваров. Также заготавливают листья смородины для чая, мяты для чая и приготовления блюд. Многие сушеные приправы также сделаны из листьев.

Какой газ выделяют клетки в процессе дыхания? (5-й класс)

При дыхании поглощается кислород, а выделяется углекислый газ.

Вопрос 3. Объясни с помощью текста и рисунков, как строение листа связано с выполняемыми им функциями.

Богатые хлоропластами клетки листа называют основной тканью листа, она и выполняет главную функцию листьев – фотосинтез. Верхний слой основной ткани состоит из плотно прижатых друг к другу клеток в виде столбиков – этот слой называют столбчатой паренхимой.

Нижний слой состоит из рыхло расположенных клеток с обширными просветами между ними – его называют губчатой паренхимой.

Газы свободно проходят между клетками основной ткани. Запас углекислого газа пополняется поступлением как из атмосферы, так и из клеток.

Для газообмена и транспирации у листа есть устьица.

Вопрос 4. Рассмотри строение листа на рисунке 11.1.

Лист состоит из листовой пластинки, черешка (может быть не у всех листьев, тогда такой лист называют сидячим), прилистников и основания листовой пластинки.

Вопрос 5. Существует противоречие: фотосинтезирующие клетки листа нужно упаковать плотнее, но движению газов препятствовать нельзя. Рассмотри рисунок 11.2 и объясни, как строение листа позволяет устранить это противоречие.

В паренхиме листа есть воздухоносные полости, которые и решают эту проблему. Эти полости связаны с внешней средой через устьица и чечевички. Воздухоносными полостями богаты стебли и корни водных, болотных и других растений, обитающих в условиях недостатка воздуха и, как следствие, затрудненного газообмена.

Вывод: листья осуществляют фотосинтез, испаряют воду, поглощают углекислый газ и выделяют кислород, защищают почки и запасают питательные вещества.

Вопрос 6. Каковы функции листа?

Листья испаряют воду, поглощают углекислый газ и выделяют кислород в процессе фотосинтеза, защищают почки и запасают питательные вещества.

Вопрос 7. Что происходит в листе с кислородом и углекислым газом?

Поглощенный из атмосферы углекислый газ + вода (уже в листьях) в листьях под действием солнечного света преобразуются в органические вещества и кислород. Последний выделяется растением в атмосферу.

Вопрос 8. Что происходит в листе с водой?

Часть воды, поступающей в листья, испаряется, а часть используется в процессе фотосинтеза.

Вопрос 9. Из каких тканей состоит лист?

Лист покрывает покровная ткань – эпидерма. Богатые хлоропластами клетки листа называют основной тканью листа. Верхний слой основной ткани состоит из плотно прижатых друг к другу клеток в виде столбиков – этот слой называют столбчатой паренхимой. Нижний слой состоит из рыхло расположенных клеток с обширными просветами между ними – его называют губчатой паренхимой.

Газы свободно проходят между клетками основной ткани за счет воздухоносной паренхимы. Для газообмена и транспирации у листа есть устьица.

Толщу основной ткани листа пронизывают проводящие ткани – пучки сосудов, состоящих из ксилемы и флоэмы. Пучки сосудов укреплены длинными и толстостенными клетками опорной ткани – они придают листу дополнительную жёсткость.

Вопрос 10. Каковы функции жилок листа?

Жилки - это транспортные магистрали двух направлений. Вместе с механическими волокнами жилки – жёсткий каркас листа.

Вопрос 11. Чем опасно перегревание и переохлаждение листа?

При слишком высокой температуре, как и при слишком низкой, фотосинтез останавливается. Не производятся ни органические вещества, ни кислород.

Вопрос 12. Как происходит отделение листа от ветки?

Питательные вещества уходят из листьев и откладываются в корнях или побегах про запас. В месте прикрепления листа к стеблю клетки отмирают (образуется рубец), и перемычка между листом и стеблем становится ломкой, её разрушает и слабый ветерок.

Вопрос 13. Чем вызвано многообразие форм листьев у растений разных видов?

От формы листа зависит испарение с него. У растений жаркого и сухого климата листья мельче, иногда в форме иголок и усиков. Благодаря этому уменьшается поверхность, с которой испаряется вода. Способ уменьшить испарение с больших листьев – обрасти пушком или покрыться толстой кутикулой либо восковым налётом.

Вопрос 14. Почему форма и размеры листьев на одном растении могут различаться?

В зависимости от среды, где эти листья находятся. Например, у стрелолиста, листья, находящиеся в воде, отличаются от листьев, выходящих на поверхность воды. Если это наземное растение, то зависит от освещенности растения солнцем, степени близости листа к корню, времени распускания листьев.

Вопрос 15. Мои биологические исследования

Словесный портрет листа может заменить его изображение.

Ботаники договорились, какими словами называть листья той или иной формы. Поэтому они могут узнать лист по словесному портрету, не заглядывая в ботанический атлас. Однако новичкам полезно пользоваться их изображениями. На с. 56 приведены схемы, где представлены разные формы листовых пластинок, вершин и оснований листовых пластинок, сложных листьев (рис. 11.7–11.11). C помощью этих схем создай словесные портреты листьев растений из гербария, ботанического атласа или учебника.

Например, у герани зональной листья длинночерешковые, слаболопастные, округлопочковидной формы, светло-зеленые, опушенные. Край листовой пластинки цельный. Вершины листовой пластинки округлые, основание листа сердцевидное.

Лавр благородный. В простонародии лист называют лавровый лист. Листья очередные, короткочерешковые, цельнокрайные, голые, простые, длиной 6-20 см и шириной 2-4 см, со своеобразным пряным запахом; пластинка листа продолговатая, ланцетная или эллиптическая, к основанию суженная, сверху тёмно-зелёная, с нижней стороны более светлая.

Клен остролистный. Форма листа простая, цельноразделенная. Листья обладают четкими, ярко выраженными жилами, имеют 5 лопастей, заканчиваются остроконечными долями, 3 передние лопасти одинаковы, 2 нижние чуть меньше. Между лопастями имеются закругленные выемки. Вершины листовой пластинки оттянутые, основание листа сердцевидное. Край листовой пластинки цельный. Сверху листья темно – зеленые, снизу – светло-зеленые, держатся на длинных черешках.

Акация белая. Лист имеет непарноперистый, сложный, состоящий из цельных, формой похожих на овал или эллипс, листочков, у основания каждого листа расположены видоизмененные в колючки прилистники.

Береза. Листья берёзы очерёдные, цельные, по краю зубчатые, яйцевидно-ромбические или треугольно-яйцевидные, с широким клиновидным основанием или почти усечённые, гладкие. Жилкование листовой пластинки совершенное перисто-нервное (перисто-краебежное): боковые жилки оканчиваются в зубцах.

Шиповник. Листорасположение очерёдное (спиральное); жилкование – перистое. Листья у него сложные, непарноперистые (верхушка листа заканчивается одним листочком), с парой прилистников. Листочков пять-семь, они эллиптические, края пильчатые, верхушка клиновидная, снизу сероватые.

Устьица на нижней поверхности листа бузины (фото Power and Syred).

Учёные до сих пор не могут объяснить механизм, управляющий устьицами растений. Сегодня с уверенностью можно сказать лишь то, что доза солнечного излучения не является однозначным и решающим фактором, влияющим на закрытие и открытие устьиц.

Чтобы жить, растения должны поглощать из воздуха углекислый газ для фотосинтеза и тянуть из почвы воду. И то и другое они делают с помощью устьиц - пор на поверхности листа, окружённых замыкающими клетками, которые эти устьица то открывают, то закрывают. Через поры испаряется вода и поддерживается постоянный ток жидкости от корней до листьев, но при этом растения регулируют уровень испарения, чтобы не пересохнуть в жаркую погоду. С другой стороны, фотосинтез постоянно требует углекислого газа. Очевидно, что устьицам приходится порой решать едва ли не взаимоисключающие задачи: не давать растению засохнуть и при этом доставлять воздух с углекислым газом.

Способ регуляции работы устьиц давно занимает науку. Общепринятая точка зрения такова, что растения учитывают количество солнечного излучения в синем и красном диапазонах спектра и в зависимости от этого держат устьица открытыми или закрытыми. Но не так давно несколько исследователей предложили альтернативную гипотезу: состояние устьиц зависит от общего количества поглощённого излучения (а не только от его синей и красной частей). Солнечный свет не только нагревает воздух и растение, он необходим для реакции фотосинтеза. Учитывая общую дозу излучения, устьица могли бы более точно реагировать на изменения в освещённости - а значит, более аккуратно управлять испарением влаги.

Исследователи из Университета Юты (США), которые подвергли эту теорию проверке, были вынуждены признать, что переворота в физиологии растений пока не предвидится. Вывод о том, что растения исходят из суммарной радиации, основывался на измерении температуры на поверхности листа. Кейт Мотт и Дэвид Пик сумели найти способ определить внутреннюю температуру листа: по словам учёных, именно разница между внешней и внутренней температурами определяет интенсивность испарения. Как пишут авторы в журнале PNAS , им не удалось обнаружить соответствия между разностью температур внутри и на поверхности листа и дозой суммарного излучения. Выходит, устьица это суммарное излучение тоже игнорировали.

По мнению исследователей, наиболее вероятным механизмом, управляющим устьицами, могло бы быть нечто вроде самоорганизующейся сети, отдалённо напоминающей нейронную (как бы дико это ни звучало в применении к растениям). Даже общепринятая гипотеза о синем и красном частях спектра не объясняет всего в работе устьиц. Нельзя ли в связи с этим представить, что все замыкающие клетки как-то связаны между собой и могут обмениваться некими сигналами? Будучи объединены, они как раз могли бы оперативно и аккуратно отвечать как на изменения во внешней среде, так и на запросы растения.

Урок «Клеточное строение листа»

Цель: показать взаимосвязь строения листа с его функциями; развить понятие о клеточном строении растений; продолжить формирование навыков самостоятельной работы с приборами, умений наблюдать, сравнивать, сопоставлять, делать самостоятельно выводы; развивать любовь и уважение к природе.

Оборудование : таблицы «Разнообразие листьев», «Клеточное строение листа»; гербарий – жилкование листьев, листья простые и сложные; комнатные растения; препараты кожицы листьев традесканции, герани.

ХОД УРОКА

Каждую весну, лето на улицах, скверах, в школьном дворе, а дома – круглый год на подоконниках нас окружают нарядные зеленые растения. Мы привыкли к ним. Привыкли настолько, что часто не замечаем разницы между ними.

Раньше многим казалось, что все листья одинаковы, но прошлый урок показал разнообразие их удивительных форм, их красоту. Вспомним пройденный материал.

Растения в зависимости от количества семядолей делятся на две группы. Какие? Верно, однодольные и двудольные! А теперь посмотрите: оказывается, каждый листик знает, к какому классу относится его растение, а кружево листорасположения помогает листьям лучше использовать свет.

Итак, возьмите первый конверт. В нем лежат листья разных растений. Разделите их на две группы по типу жилкования. Молодцы! А теперь листья из второго конверта тоже разложите на две группы, но уже по вашему усмотрения. Кто сможет сказать, каким принципом вы руководствовались при наведении порядка? Правильно, вы разделили листья сложные и простые.

А теперь посмотрите – на столах задания. Пожалуйста, выполните их.

1. Лист – это часть... . Листья состоят из... и... .

2. На рисунке изображены листья с разными типами жилкования. Подпишите, у какого листочка какое жилкование.

От внешнего описания перейдем к изучению внутреннего строения листа. На одном из уроков мы узнали, что лист необходим растению для воздушного питания, а как он устроен? Лист состоит из клеток, при этом клеток неодинаковых и выполняющих при этом разные функции. Какая ткань покрывает лист? Покровная или защитная!

В зеленом тереме
Площади не меряны,
Комнаты не считаны,
Стены – как стекло,
Все насквозь видно!
А в стенах – окошки,
Сами открываются
Сами закрываются!

Давайте разберем эту загадку. Зеленый терем – это лист, комнаты – клетки. Прозрачные, как стекло, стены – это покровная ткань. Вот ее мы сегодня и рассмотрим. Для этого вам нужно приготовить препарат. Как правильно это делать, мы научились, когда изучали кожицу листа.

Один ученик делает препарат кожицы верхней стороны листа, второй – нижней. Приготовили, настроили микроскоп. Сначала рассмотрим верхнюю кожицу. Почему она как стекло? Потому что прозрачная и поэтому пропускает лучи света.

А что значит «в стенах окошки»? Попробуйте найти их! Для этого лучше рассмотреть кожицу нижней стороны листа. Чем некоторые клетки отличаются от остальных?

Устьичные клетки образуют «окошко»: они замыкающие и, в отличие от других клеток покровной ткани, имеют зеленый цвет, т.к. содержат хлоропласты. Щель между ними называется устьичной.

Как вы думаете, зачем нужны устьица? Для обеспечения испарения, проникновения в лист воздуха. А открываются и закрываются они для регуляции проникновения воздуха и воды. Рассмотрите различия в строении верхней и нижней кожицы. Устьиц на нижней стороне больше. У разных растений листья имеют разное количество устьиц.

Теперь нам нужно оформить наши наблюдения в виде отчета о лабораторной работе. Для этого выполните следующие задания.

Лабораторная работа «Строение кожицы листа»

1. Найдите на микропрепарате бесцветные клетки покровной ткани, рассмотрите их. Опишите, какую форму они имеют? Каково их строение? Какую роль они играют в жизни листа?

2. Найдите устьица. Зарисуйте форму замыкающих клеток. Отметьте, чем отличаются замыкающие клетки от клеток покровной ткани. Найдите между замыкающими клетками устьичную щель.

3. Зарисуйте кожицу в тетрадь, на рисунке подпишите: основные клетки кожицы, замыкающие клетки, устьица, устьичную щель.

Устьица, их строение и механизм действия

Клетки эпидермиса почти непроницаемы для воды и газов благодаря своеобразному устройству их наружной стенки. Как же осуществляются газообмен между растением и наружной средой и испарение воды -- процессы, необходимые для нормальной жизнедеятельности растения? Среди клеток эпидермиса встречаются характерные образования, называемые устьицами.

Устьице -- щелевидное отверстие, окаймленное с двух сторон двумя замыкающими клетками, имеющими большей частью полулунную форму.

Устьица - это поры в эпидермисе, через которые происходит газообмен. Они имеются главным образом в листьях, но есть и на стебле. Каждое устьице с двух сторон окружено замыкающими клетками, которые в отличие от других эпидермальных клеток содержат хлоропласты. Замыкающие клетки контролируют величину отверстия устьица за счет изменения своей тургесцентности.

Клетки эти живые и содержат хлорофилловые зерна и крупинки крахмала, отсутствующие в других клетках эпидермиса. Особенно много устьиц на листе. На поперечном разрезе видно, что непосредственно под устьицем внутри ткани листа находится полость, называемая дыхательной. В пределах щели замыкающие клетки более сближены в средней части клеток, а выше и ниже они дальше отступают друг от друга, образуя пространства, называемые передним и задним двориком.

Замыкающие клетки способны увеличивать и сокращать свои размеры, благодаря чему устьичная щель то широко раскрывается, то суживается или даже совсем бывает закрыта.

Таким образом, замыкающие клетки являются аппаратом, регулирующим процесс открывания и закрывания устьиц.

Как же осуществляется этот процесс?

Стенки замыкающих клеток, обращенные к щели, утолщены значительно сильнее, чем стенки, обращенные к соседним клеткам эпидермиса. Когда растение освещено и имеет избыток влаги, в хлорофилловых зернах замыкающих клеток происходит накопление крахмала, часть которого превращается в сахар. Сахар, растворенный в клеточном соке, притягивает воду из соседних клеток эпидермиса, вследствие чего в замыкающих клетках повышается тургор. Сильное давление приводит к выпячиванию стенок клеток, примыкающих к эпидермальным, а противоположные, сильно утолщенные стенки выпрямляются. Вследствие этого устьичная щель раскрывается, и газообмен, а также испарение воды увеличиваются. В темноте или при недостатке влаги тургорное давление уменьшается, замыкающие клетки принимают прежнее положение и утолщенные стенки смыкаются. Щель устьица закрывается.

Устьица расположены на всех молодых неодревесневших наземных органах растения. Особенно много их на листьях, причем здесь они расположены, главным образом, на нижней поверхности. Если лист расположен вертикально, то устьица развиваются с обеих его сторон. У плавающих на поверхности воды листьев некоторых водных растений (например, кувшинки, кубышки) устьица расположены только на верхней стороне листа.

Число устьиц на 1 кв. мм листовой поверхности в среднем равно 300, однако иногда достигает 600 и более. У рогоза (Typha) насчитывают свыше 1300 устьиц на 1 кв. мм. Листья, погруженные в воду, устьиц не имеют. Расположены устьица чаще всего равномерно по всей поверхности кожицы, но у некоторых растений собраны группами. У однодольных растений, а также на хвоинках многих хвойных они расположены продольными рядами. У растений засушливых областей нередко устьица бывают погружены в ткань листа. Развитие устьиц обычно происходит следующим образом. В отдельных клетках эпидермиса образуются дугообразные стенки, разделяющие клетку на несколько более мелких так, что центральная из них становится родоначальницей устьиц. Эта клетка разделяется продольной (по оси клетки) перегородкой. Затем эта перегородка расщепляется, и образуется щель. Ограничивающие ее клетки становятся замыкающими клетками устьица. У некоторых печеночных мхов имеются своеобразные устьица, лишенные замыкающих клеток.

На рис. показан вид устьиц и замыкающих клеток на микрофотографии, полученной с помощью сканирующего электронного микроскопа.

Здесь видно, что клеточные стенки замыкающих клеток неоднородны по толщине: та стенка, которая ближе к отверстию устьица, явно толще, чем противоположная стенка. К тому же целлюлозные микрофибриллы, из которых состоит клеточная стенка, расположены таким образом, что стенка, обращенная к отверстию, менее эластична, а некоторые волокна образуют своего рода обручи вокруг замыкающих клеток, похожих на сардельки. По мере того как клетка всасывает воду и становится тургесцентной, эти обручи не дают ей расширяться дальше, позволяя лишь растягиваться в длину. Поскольку замыкающие клетки соединены своими концами, а более тонкие стенки вдали от устьичной щели растягиваются легче, клетки приобретают полукруглую форму. Поэтому между замыкающими клетками появляется отверстие. (Такой же эффект мы получим, если будем надувать колбасовидный воздушный шарик с липкой лентой, приклеенной к нему вдоль одной из его сторон.)

И наоборот, когда вода выходит из замыкающих клеток, пора закрывается. Каким образом происходит изменение тургесцентности клеток, пока не ясно.

В одной из традиционных гипотез - "сахарокрахмальной" гипотезе - предполагается, что днем в замыкающих клетках возрастает концентрация сахара, а в результате повышается осмотическое давление в клетках и поступление в них воды. Однако никому еще не удалось показать, что в замыкающих клетках накапливается достаточное количество сахара, чтобы вызвать наблюдаемые изменения осмотического давления. Недавно было установлено, что днем на свету в замыкающих клетках накапливаются ионы калия и сопутствующие им анионы; такого накопления ионов вполне достаточно, чтобы вызвать наблюдаемые изменения. В темноте ионы калия (К+) выходят из замыкающих клеток в прилегающие к ним клетки эпидермиса. До сих пор неясно, каким анионом уравновешивается положительный заряд иона калия. У некоторых (но не у всех) изученных растений отмечалось накопление большого количества анионов органических кислот типа малата. Одновременно уменьшаются в размере крахмальные зерна, которые появляются в темноте в хлоропластах замыкающих клеток. Это позволяет предполагать, что крахмал на свету превращается в малат.

У некоторых растений, например у Allium cepa (лук), в замыкающих клетках нет крахмала. Поэтому при открытых устьицах малат не накапливается, а катионы, по-видимому, поглощаются вместе с неорганическими анионами типа хлорида (Сl-).

Некоторые вопросы остаются нерешенными. Например, почему для открывания устьиц нужен свет? Какую роль играют хлоропласты, кроме запасания крахмала? Превращается ли малат в темноте обратно в крахмал? В 1979 г. было показано, что в хлоропластах замыкающих клеток Vicia faba (конские бобы) отсутствуют ферменты цикла Кальвина и система тилакоидов развита плохо, хотя хлорофилл и имеется. В результате не работает обычный С3 - путь фотосинтеза и не образуется крахмал. Это могло бы помочь объяснить, почему крахмал образуется не днем, как в обычных фотосинтезирующих клетках, а ночью. Другой интересный факт - отсутствие плазмодесм в замыкающих клетках, т.е. сравнительная изолированность этих клеток от остальных клеток эпидермиса.



Похожие публикации