Устойчивый к коррозии датчик влажности почвы, годный для дачной автоматики. Датчики влажности - как устроены и работают Самые интересные ролики на Youtube

Датчик влажности почвы Arduino предназначен для определения влажности земли, в которую он погружен. Он позволяет узнать о недостаточном или избыточном поливе ваших домашних или садовых растений. Подключение данного модуля к контроллеру позволяет автоматизировать процесс полива ваших растений, огорода или плантации (своего рода "умный полив").

Модуль состоит из двух частей: контактного щупа YL-69 и датчика YL-38, в комплекте идут провода для подключения.. Между двумя электродами щупа YL-69 создаётся небольшое напряжение. Если почва сухая, сопротивление велико и ток будет меньше. Если земля влажная - сопротивление меньше, ток - чуть больше. По итоговому аналоговому сигналу можно судить о степени влажности. Щуп YL-69 соединен с датчиком YL-38 по двум проводам. Кроме контактов соединения с щупом, датчик YL-38 имеет четыре контакта для подключения к контроллеру.

  • Vcc – питание датчика;
  • GND – земля;
  • A0 - аналоговое значение;
  • D0 – цифровое значение уровня влажности.
Датчик YL-38 построен на основе компаратора LM393, который выдает напряжение на выход D0 по принципу: влажная почва – низкий логический уровень, сухая почва – высокий логический уровень. Уровень определяется пороговым значением, которое можно регулировать с помощью потенциометра. На вывод A0 подается аналоговое значение, которое можно передавать в контроллер для дальнейшей обработки, анализа и принятия решений. Датчик YL-38 имеет два светодиода, сигнализирующих о наличие поступающего на датчик питания и уровня цифрового сигналы на выходе D0. Наличие цифрового вывода D0 и светодиода уровня D0 позволяет использовать модуль автономно, без подключения к контроллеру.

Технические характеристики модуля

  • Напряжение питания: 3.3-5 В;
  • Ток потребления 35 мА;
  • Выход: цифровой и аналоговый;
  • Размер модуля: 16×30 мм;
  • Размер щупа: 20×60 мм;
  • Общий вес: 7.5 г.

Пример использования

Рассмотрим подключение датчика влажности почвы к Arduino. Создадим проект индикатора уровня влажности почвы для комнатного растения (ваш любимый цветок, который вы иногда забываете поливать). Для индикации уровня влажности почвы будем использовать 8 светодиодов. Для проекта нам понадобятся следующие детали:
  • Плата Arduino Uno
  • Датчик влажности почвы
  • 8 светодиодов
  • Макетная плата
  • Соединительные провода.
Соберем схему, показанную на рисунке ниже


Запустим Arduino IDE. Создадим новый скетч и внесем в него следующие строчки: // Датчик влажности почвы // http://сайт // контакт подключения аналогового выхода датчика int aPin=A0; // контакты подключения светодиодов индикации int ledPins={4,5,6,7,8,9,10,11}; // переменная для сохранения значения датчика int avalue=0; // переменная количества светящихся светодиодов int countled=8; // значение полного полива int minvalue=220; // значение критической сухости int maxvalue=600; void setup() { // инициализация последовательного порта Serial.begin(9600); // настройка выводов индикации светодиодов // в режим OUTPUT for(int i=0;i<8;i++) { pinMode(ledPins[i],OUTPUT); } } void loop() { // получение значения с аналогового вывода датчика avalue=analogRead(aPin); // вывод значения в монитор последовательного порта Arduino Serial.print("avalue=");Serial.println(avalue); // масштабируем значение на 8 светодиодов countled=map(avalue,maxvalue,minvalue,0,7); // индикация уровня влажности for(int i=0;i<8;i++) { if(i<=countled) digitalWrite(ledPins[i],HIGH); //зажигаем светодиод else digitalWrite(ledPins[i],LOW); // гасим светодиод } // пауза перед следующим получением значения 1000 мс delay(1000); } Аналоговый вывод датчика подключен к аналоговому входу Arduino, который представляет собой аналого-цифровой преобразователь (АЦП) с разрешением 10 бит, что позволяет на выходе получать значения от 0 до 1023. Значение переменных для полного полива (minvalue) и сильной сухости почвы (maxvalue) получим экспериментально. Большей сухости почвы соответствует большее значение аналогового сигнала. С помощью функции map масштабируем аналоговое значение датчика в значение нашего светодиодного индикатора. Чем больше влажность почвы, тем больше значение светодиодного индикатора (количество зажженных светодиодов). Подключив данный индикатор к цветку, мы издали можем видеть на индикаторе степень влажности и при определять необходимость полива.

Часто задаваемые вопросы FAQ

1. Не горит светодиод питания
  • Проверьте наличие и полярность подаваемого на датчик YL-38 питания (3,3 – 5 В).
2. При поливе почвы не загорается светодиод индикации влажности почвы
  • Настройте потенциометром порог срабатывания. Проверьте соединение датчика YL-38 с щупом YL-69.
3. При поливе почвы не изменяется значение выходного аналогового сигнала
  • Проверьте соединение датчика YL-38 с щупом YL-69.
  • Проверьте наличие щупа в земле.

Прибор, которым измеряют уровень влажности, называется гигрометром или просто датчиком влажности. В повседневной жизни влажность выступает немаловажным параметром, и часто не только для самой обычной жизни, но и для различной техники, и для сельского хозяйства (влажность почвы) и много для чего еще.

В частности, от степени влажности воздуха немало зависит наше самочувствие. Особенно чувствительными к влажности являются метеозависимые люди, а также люди, страдающие гипертонической болезнью, бронхиальной астмой, заболеваниями сердечно-сосудистой системы.

При высокой сухости воздуха даже здоровые люди ощущают дискомфорт, сонливость, зуд и раздражение кожных покровов. Часто сухой воздух может спровоцировать заболевания дыхательной системы, начиная с ОРЗ и ОРВИ, и заканчивая даже пневмонией.

На предприятиях влажность воздуха способна влиять на сохранность продукции и оборудования, а в сельском хозяйстве однозначно влияние влажности почвы на плодородие и т. д. Здесь и спасает применение датчиков влажности — гигрометров .

Какие-то технические приборы изначально калибруются под строго требуемую важность, и иногда чтобы провести точную настройку прибора, важно располагать точным значением влажности в окружающей среде.

Влажность может измеряться несколькими из возможных величин:

    Для определения влажности как воздуха, так и других газов, измерения проводятся в граммах на кубометр, когда речь об абсолютном значении влажности, либо в единицах RH, когда речь о влажности относительной.

    Для измеряется влажности твердых тел или в жидкостях подходят измерения в процентах от массы исследуемых образцов.

    Для определения влажности плохо смешиваемых жидкостей, единицами измерения будут служить ppm (сколько частей воды приходится на 1000000 частей веса образца).

По принципу действия, гигрометры делятся на:

    емкостные;

    резистивные;

    термисторные;

    оптические;

    электронные.

Емкостные гигрометры, в самом простом случае, представляют собой конденсаторы с воздухом в качестве диэлектрика в зазоре. Известно, что у воздуха диэлектрическая проницаемость непосредственно связана с влажностью, а изменения влажности диэлектрика приводят и к изменениям в емкости воздушного конденсатора.

Более сложный вариант емкостного датчика влажности в воздушном зазоре содержит диэлектрик, с диэлектрической проницаемостью, могущей сильно меняться под влиянием на него влажности. Данный подход делает качество датчика лучше, чем просто с воздухом между обкладками конденсатора.

Второй вариант хорошо подходит для проведения измерений относительно содержания воды в твердых веществах. Исследуемый объект размещается между обкладками такого конденсатора, к примеру объектом может быть таблетка, а сам конденсатор присоединяется к колебательному контуру и к электронному генератору, при этом измеряется собственная частота полученного контура, и по измеренной частоте «вычисляется» емкость, полученная при внесении исследуемого образца.

Безусловно, данный метод обладает и некоторыми недостатками, например при влажности образца ниже 0.5% он будет неточным, кроме того, измеряемый образец должен быть очищен от частиц, имеющих высокую диэлектрическую проницаемость, к тому же важна и форма образца в процессе измерений, она не должна изменяться в ходе исследования.

Третий тип емкостного датчика влажности - это емкостный тонкопленочный гигрометр. Он включает в себя подложку, на которую нанесены два гребенчатых электрода. Гребенчатые электроды играют в данном случае роль обкладок. С целью термокомпенсации в датчик дополнительно вводят еще и два термодатчика.

Такой датчик включает в себя два электрода, которые нанесены на подложку, а поверх на сами электроды нанесен слой материала, который отличается достаточно малым сопротивлением, сильно, однако, меняющимся в зависимости от влажности.

Подходящим материалом в устройстве может выступать оксид алюминия. Данный оксид хорошо поглощает из внешней среды воду, при этом удельное сопротивление его заметно изменяется. В результате общее сопротивление цепи измерения такого датчика будет значительно зависеть от влажности. Так, об уровне влажности станет свидетельствовать величина протекающего тока. Достоинство датчиков такого типа - малая их цена.

Термисторный гигрометр состоит из пары одинаковых термисторов. К слову напомним, что — это нелинейный электронный компонент, сопротивление которого сильно зависит от его температуры.

Один из включенных в схему термисторов размещают в герметичной камере с сухим воздухом. А другой - в камере с отверстиями, через которые в нее поступает воздух с характерной влажностью, значение которой требуется измерить. Термисторы соединяют по мостовой схеме, на одну из диагоналей моста подается напряжение, а с другой диагонали считывают показания.

В случае, когда напряжение на выходных клеммах равно нулю, температуры обоих компонентов равны, следовательно одинакова и влажность. В случае, когда на выходе будет получено не нулевое напряжение, то это свидетельствует о наличии разности влажностей в камерах. Так, по значению полученного при измерениях напряжения определяют влажность.

У неискушенного исследователя может возникнуть справедливый вопрос, почему же температура термистора меняется при его взаимодействии с влажным воздухом? А дело все в том, что при увеличении влажности, с корпуса термистора начинает испаряться вода, при этом температура корпуса уменьшается, и чем выше влажность, тем более интенсивно происходит испарение, и тем стремительнее остывает термистор.

4) Оптический (конденсационный) датчик влажности

Этот вид датчиков наиболее точен. В основе работы оптического датчика влажности — явление связанной с понятием «точка росы». В момент достижения температурой точки росы, газообразная и жидкая фазы - в условии термодинамического равновесия.

Так, если взять стекло, и установит в газообразной среде, где температура в момент исследования выше точки росы, а затем начать процесс охлаждения данного стекла, то при конкретном значении температуры на поверхности стекла начнет образовываться водяной конденсат, это водяной пар станет переходить в жидкую фазу. Данная температура и будет как раз точкой росы.

Так вот, температура точки росы неразрывно связана и зависит от таких параметров как влажность и давление в окружающей среде. В результате, имея возможность измерения давления и температуры точки росы, получится легко определить и влажность. Этот принцип служит основой для функционирования оптических датчиков влажности.

Простейшая схема такого датчика состоит из светодиода, светящего на зеркальную поверхность. Зеркало же отражает свет, меняя его направление, и направляя на фотодетектор. В данном случае зеркало можно подогревать или охлаждать посредством специального устройства регулирования температуры высокой точности. Часто таким устройством выступает термоэлектрический насос. Конечно же, на зеркало устанавливают датчик для измерения температуры.

Прежде чем начать измерения, температуру зеркала выставляют на значение, которое заведомо выше температуры точки росы. Дальше осуществляют постепенное охлаждение зеркала. В момент, когда температура начнет пересекать точку росы, на поверхности зеркала тут же начнут конденсироваться капли воды, и световой луч от диода приломится из-за них, рассеется, а это приведет к уменьшению тока в цепи фотодетектора. Через обратную связь фотодетектор взаимодействует с регулятором температуры зеркала.

Так, опираясь на информацию, полученную в форме сигналов от фотодетектора, регулятор температуры станет удерживать температуру на поверхности зеркала точно равной точке росы, а термодатчик соответственно покажет температуру. Так, при известных давлении и температуре можно точно определить основные показатели влажности.

Оптический датчик влажности обладает самой высокой точностью, недостижимой другими типами датчиков, плюс отсутствие гистерезиса. Недостаток — самая высокая цена из всех, плюс большое потребление электроэнергии. К тому же необходимо следить за тем, чтобы зеркало было чистым.

Принцип работы электронного датчика влажности воздуха основан на изменении концентрации электролита, покрывающего собой любой электроизоляционный материал. Существуют такие приборы с автоматическим подогревом с привязкой к точке росы.

Часто точка росы измеряется над концентрированным раствором хлорида лития, который является очень чувствительным к минимальным изменениям влажности. Для максимального удобства такой гигрометр зачастую дополнительно оборудуют термометром. Этот прибор обладает высокой точностью и малой погрешностью. Он способен измерять влажность независимо от температуры окружающей среды.

Популярны и простые электронные гигрометры в форме двух электродов, которые просто втыкаются в почву, контролируя ее влажность по степени проводимости в зависимости от этой самой влажности. Такие сенсоры популярны у поклонников , поскольку можно легко настроить автоматический полив грядки или цветка в горшке, на случай если поливать в ручную некогда или не удобно.

Прежде чем купить датчик, подумайте, что вам нужно будет измерять, относительную или абсолютную влажность, воздуха или почвы, каков предвидится диапазон измерений, важен ли гистерезис, и какая нужна точность. Самый точный датчик — оптический. Обратите внимание на класс защиты IP, на диапазон рабочих температур, в зависимости от конкретных условий, где будет использоваться датчик, подойдут ли вам параметры.

Избавит от однообразной повторяющейся работы, а избежать избытка воды поможет датчик влажности почвы - своими руками такой прибор собрать не так уж сложно. На помощь садоводу приходят законы физики: влага в грунте становится проводником электрических импульсов, и чем ее больше, тем ниже сопротивление. При понижении влажности сопротивление увеличивается, и это помогает отследить оптимальное время полива.

Конструкция датчика влажности почвы представляет собой два проводника, которые подключаются к слабому источнику энергии, в схеме должен присутствовать резистор. Как только количество влаги в пространстве между электродами растет, сопротивление снижается, и сила тока увеличивается.

Влага высыхает – сопротивление растет, сила тока снижается.

Поскольку электроды будут находиться во влажной среде, их рекомендуется включать через ключ, чтобы уменьшить разрушительное влияние коррозии. В обычное время система стоит выключенной и запускается только для проверки влажности нажатием кнопки.

Датчики влажности почвы такого типа можно устанавливать в теплицах – они обеспечивают контроль за автоматическим поливом , поэтому система может функционировать вообще без участия человека. В этом случае система постоянно будет находиться в рабочем состоянии, но состояние электродов придется контролировать, чтобы они не пришли в негодность под воздействием коррозии. Аналогичные устройства можно устанавливать на грядках и газонах на открытом воздухе – они позволят мгновенно получить нужную информацию.

При этом система оказывается намного точнее простого тактильного ощущения. Если человек будет считать землю полностью сухой, датчик покажет до 100 единиц влажности грунта (при оценке в десятеричной системе), сразу после полива это значение вырастает до 600-700 единиц.

После этого датчик позволит контролировать изменение содержания влажности в грунте.

Если датчик предполагается использовать на улице, его верхнюю часть желательно тщательно загерметизировать, чтобы не допустить искажения информации. Для этого ее можно покрыть водонепроницаемой эпоксидной смолой.

Конструкция датчика собирается следующим образом:

  • Основная часть – два электрода, диаметр которых составляет 3-4 мм, они прикрепляются к основанию, изготовленному из текстолита или другого материала, защищенного от коррозии.
  • На одном конце электродов нужно нарезать резьбу, с другой стороны они делаются заостренными для более удобного погружения в грунт.
  • В пластине из текстолита просверливаются отверстия, в которые вкручиваются электроды, их нужно закрепить гайками с шайбами.
  • Под шайбы нужно завести исходящие провода, после чего электроды изолируются. Длина электродов, которые будут погружаться в грунт, составляет около 4-10 см. в зависимости от используемой емкости или открытой грядки.
  • Для работы датчика потребуется источник тока силой 35 мА, система требует напряжения 5В. В зависимости от количества влаги в почве диапазон возвращаемого сигнала составит 0-4,2 В. Потери на сопротивление продемонстрируют количество воды в грунте.
  • Подключение датчика влажности почвы проводится через 3 провода к микропроцессору, для этой цели можно приобрести, например, Arduino. Контроллер позволит соединить систему с зуммером для подачи звукового сигнала при чрезмерном уменьшении влажности почвы, или к светодиоду, яркость освещения будет меняться при изменениях в работе датчика.

Такое самодельное устройство может стать частью автополива в системе "Умный дом", например, с использованием Ethernet-контроллера MegD-328. Web-интерфейс показывает уровень влажности в 10-битной системе: диапазон от 0 до 300 говорит о том, что земля совершенно сухая, 300-700 – в почве достаточно влаги, более 700 – земля мокрая, и полив не требуется.

Конструкция, состоящая из контроллера, реле и элемента питания убирается в любой подходящий корпус, для которого можно приспособить любую пластиковую коробочку.

В домашних условиях использование такого датчика влажности будет очень простым и вместе с тем надежным.

Применение датчика влажности грунта может быть самым разнообразным. Наиболее часто они используются в системах автополива и ручного полива растений:

  1. Их можно установить в цветочных горшках, если растения чувствительны к уровню воды в грунте. Если речь идет о суккулентах, например, о кактусах, необходимо вбирать длинные электроды, которые будут реагировать на изменение уровня влажности непосредственно у корней. Их также можно использовать для и других растений с хрупкой . Подключение к светодиоду позволит точно определить, когда пора проводить .
  2. Они незаменимы для организации полива растений . По аналогичному принципу также собираются датчики влажности воздуха, которые нужны для запуска в работу системы опрыскивания растений. Все это позволит автоматическим образом обеспечить полив растений и нормальный уровень атмосферной влажности.
  3. На даче использование датчиков позволит не держать в памяти время полива каждой грядки, электротехника сама расскажет о количестве воды в грунте. Это позволит не допустить избыточного полива, если недавно прошел дождь.
  4. Применение датчиков очень удобно и в некоторых других случаях. К примеру, они позволят контролировать влажность грунта в подвале и под домом вблизи фундамента. В квартире его можно установить под мойкой: если труба начнет капать, об этом тут же сообщит автоматика, и можно будет избежать затопления соседей и последующего ремонта.
  5. Простое устройство датчика позволит всего за несколько дней полностью оборудовать системой оповещения все проблемные участки дома и сада. Если электроды достаточно длинные, с их помощью можно будет контролировать уровень воды, к примеру, в искусственном небольшом водоеме.

Самостоятельное изготовление датчика поможет оборудовать дом автоматической системой контроля с минимальными затратами.

Комплектующие фабричного производства легко приобрести через интернет или в специализированном магазине, большую часть устройств можно собрать из материалов, которые всегда найдутся в доме любителя электротехники.

Больше информации можно узнать из видео.

Нередко в продаже можно встретить такие приспособления, которые устанавливаются на цветочный горшок и следят за уровнем влажности почвы, включая при необходимости насос и поливая растение. Благодаря такому устройству можно будет спокойно уезжать в отпуск на недельку, не боясь, что любимый фикус завянет. Однако цена на такие приспособления неоправданно высока, ведь их устройство предельно простое. Так зачем покупать, если можно сделать самому?

Схема

Предлагаю к сборке схему простого и проверенного датчика влажности почвы, схема которого изображена ниже:

В почку горшка опускаются два металлических прутка, сделать которые можно, например, разогнув скрепку. Их нужно воткнуть в землю на расстоянии примерно 2-3 сантиметра друг от друга. Когда почва сухая, она плохо проводит электрический ток, сопротивление между прутками очень велико. Когда почва влажная – её электропроводность значительно повышается и сопротивление между прутками уменьшается, именно это явление лежит в основе работы схемы.
Резистор 10 кОм и участок почвы между прутками образуют делитель напряжения, выход которого соединён с инвертирующим входом операционного усилителя. Т.е. напряжение на нём зависит лишь от того, насколько увлажнена почва. Если поместить датчик во влажную почву, то напряжение на входе ОУ будет равно примерно 2-3 вольтам. По мере высыхания земли это напряжение будет увеличиваться и достигнет значения 9-10 вольт при совершенно сухой земле (конкретные значения напряжения зависят от типа почвы). Напряжение на неинвертирующем входе ОУ задаётся вручную переменным резистором (10 кОм на схеме, его номинал можно менять в пределах 10-100 кОм) в пределах от 0 до 12-ти вольт. С помощью этого переменного резистора задаётся порог срабатывания датчика. Операционный усилитель в этой схеме работает в качестве компаратора, т.е. он сравнивает напряжения на инвертирующем и неинвертирующем входах. Как только напряжение с инвертирующего входа превысит напряжение с неинвертирующего, на выходе ОУ появится минус питания, загорится светодиод и откроется транзистор. Транзистор, в свою очередь, активирует реле, управляющее водяным насосом или электрическим клапаном. Вода начнёт поступать в горшок, земля вновь станет влажной, её электропроводность увеличиться, и схема отключит подачу воды.
Печатная плата, предлагающаяся к статье, рассчитана на использования сдвоенного операционного усилителя, например, TL072, RC4558, NE5532 или других аналогов, одна его половинка при этом не используется. Транзистор в схеме используется малой или средней мощности и структуры PNP, можно применить, например, КТ814. Его задача – включение и выключение реле, также вместо реле можно применить ключ на полевом транзисторе, как это сделал я. Напряжение питания схемы – 12 вольт.
Скачайте плату:

(cкачиваний: 371)

Сборка датчика влажности почвы

Может случиться такое, что при высыхании почвы реле включается не чётко, а сначала начинает быстро щёлкать, и только после этого устанавливается в открытом состоянии. Это говорит о том, что провода от платы до горшка с растением улавливают сетевые наводки, пагубно влияющие на работу схемы. В таком случае, не помешает заменить провода на экранированные и поставить электролитический конденсатор ёмкостью 4.7 – 10 мкФ параллельно участку почвы, вдобавок к ёмкости 100 нФ, указанной на схеме.
Работа схемы мне очень понравилась, рекомендую к повторению. Фото собранного мной устройства:

Соединяем Arduino с датчиком влажности почвы FC-28, чтобы определить, когда ваша почва под растениями нуждается в воде.

В этой статье мы собираемся использовать датчик влажности почвы FC-28 с Ардуино. Этот датчик измеряет объемное содержание воды в почве и дает нам уровень влаги. Датчик дает нам на выходе аналоговые и цифровые данное. Мы собираемся подключить его в обоих режимах.

Датчик влажности почвы состоит из двух датчиков, которые используются для измерения объемного содержания воды. Два зонда позволяют току пройти через почву, которая дает значение сопротивления, что позволяет в итоге измерить значение влаги.

Когда есть вода, почва будет проводить больше электричества, а это значит, что будет меньше сопротивление. Сухая почва плохо проводит электричество, поэтому когда воды меньше, почва проводит меньше электричества, а это значит, что сопротивление будет больше.

Датчик FC-28 можно соединить в аналоговом и цифровом режимах. Сначала мы подключим его в аналоговом режиме, а затем в цифровом.

Спецификация

Спецификации датчика влажности почвы FC-28:

  • входное напряжение: 3.3–5V
  • выходное напряжение: 0–4.2V
  • входной ток: 35mA
  • выходной сигнал: аналоговый и цифровой

Распиновка

Датчик влажности почвы FC-28 имеет четыре контакта:

  • VCC: питание
  • A0: аналоговый выход
  • D0: цифровой выход
  • GND: земля

Модуль также содержит потенциометр, который установит пороговое значение. Это пороговое значение будет сравниваться на компараторе LM393. Светодиод будет нам сигнализировать значение выше или ниже порогового.

Аналоговый режим

Для подключения датчика в аналоговом режиме нам потребуется использовать аналоговый выход датчика. Датчик влажности почвы FC-28 принимает аналоговые выходные значения от 0 до 1023.

Влажность измеряется в процентах, поэтому мы сопоставим эти значения от 0 до 100, а затем покажем их на последовательном мониторе (serial monitor). Вы можете установить различные значения влаги и повернуть водяную помпу "включено-выключено" согласно этим значениям.

Электрическая схема

Подключите датчик влажности почвы FC-28 к Ардуино следующим образом:

  • VCC FC-28 → 5V Arduino
  • GND FC-28 → GND Arduino
  • A0 FC-28 → A0 Arduino

Код для аналогового выхода

Для аналогового выхода мы пишем такой код:

Int sensor_pin = A0; int output_value ; void setup() { Serial.begin(9600); Serial.println("Reading From the Sensor ..."); delay(2000); } void loop() { output_value= analogRead(sensor_pin); output_value = map(output_value,550,0,0,100); Serial.print("Mositure: "); Serial.print(output_value); Serial.println("%"); delay(1000); }

Объяснение кода

Прежде всего, мы определили две переменные: одну для контакта датчика влажности почвы, а другую для хранения выхода датчика.

Int sensor_pin = A0; int output_value ;

В функции setup, команда Serial.begin(9600) поможет в общении между Arduino и серийным монитором. После этого, мы напечатаем "Reading From the Sensor ...” (англ. - считываем с датчика) на обычном дисплее.

Void setup() { Serial.begin(9600); Serial.println("Reading From the Sensor ..."); delay(2000); }

В функции цикла, мы прочитаем значение от аналогового выхода датчика и сохраним значение в переменной output_value . Затем мы сопоставим выходные значения с 0-100, потому что влажность измеряется в процентах. Когда мы брали показания с сухого грунта, значение датчика было 550, а во влажном грунте значение датчика было 10. Мы сопоставили эти значения, чтобы получить значение влаги. После этого мы напечатали эти значения на последовательном мониторе.

void loop() { output_value= analogRead(sensor_pin); output_value = map(output_value,550,10,0,100); Serial.print("Mositure: "); Serial.print(output_value); Serial.println("%"); delay(1000); }

Цифровой режим

Для подключения датчика влажности почвы FC-28 в цифровом режиме мы подключим цифровой выход датчика к цифровому контакту Arduino.

Модуль датчика содержит потенциометр, который использован для того чтобы установить пороговое значение. Пороговое значение после этого сравнивается со значением выхода датчика используя компаратор LM393, который помещен на модуле датчика FC-28. Компаратор LM393 сравнивает значение выхода датчика и пороговое значение, и после этого дает нам выходное значение через цифровой вывод.

Когда значение датчика больше чем пороговое значение, цифровой выход передаст нам 5В, и загорится светодиод датчика. В противном случае, когда значение датчика будет меньше чем это пороговое значение на цифровой вывод передастся 0В и светодиод не загорится.

Электрическая схема

Соединения для датчика влажности почвы FC-28 и Ардуино в цифровом режиме следующие:

  • VCC FC-28 → 5V Arduino
  • GND FC-28 → GND Arduino
  • D0 FC-28 → Пин 12 Arduino
  • Светодиод положительный → Вывод 13 Ардуино
  • Светодиод минус → GND Ардуино

Код для цифрового режима

Код для цифрового режима ниже:

Int led_pin =13; int sensor_pin =8; void setup() { pinMode(led_pin, OUTPUT); pinMode(sensor_pin, INPUT); } void loop() { if(digitalRead(sensor_pin) == HIGH){ digitalWrite(led_pin, HIGH); } else { digitalWrite(led_pin, LOW); delay(1000); } }

Объяснение кода

Прежде всего, мы инициализировали 2 переменные для соединения вывода светодиода и цифрового вывода датчика.

Int led_pin = 13; int sensor_pin = 8;

В функции setup мы объявляем пин светодиода как пин выхода, потому что мы включим светодиод через него. Мы объявили пин датчика как входной пин, потому как Ардуино будет принимать значения от датчика через этот вывод.

Void setup() { pinMode(led_pin, OUTPUT); pinMode(sensor_pin, INPUT); }

В функции цикла, мы считываем с вывода датчика. Если значение более высокое чем пороговое значение, то включится светодиод. Если значение датчика будет ниже порогового значения, то индикатор погаснет.

Void loop() { if(digitalRead(sensor_pin) == HIGH){ digitalWrite(led_pin, HIGH); } else { digitalWrite(led_pin, LOW); delay(1000); } }

На этом вводный урок по работе с датчиком FC-28 для Ардуино мы завершаем. Успешных вам проектов.



Похожие публикации