Закон и периодическая система элементов план. Периодический закон Д

Периодическая система химических элементов Д. И. Менделеева

Основные понятия:

1. Порядковый номер химического элемента - номер, данный элементу при его нумерации. Показывает общее число электронов в атоме и число протонов в ядре, определяет заряд ядра атома данного химического элемента.

2. Период – химические элементы, расположенные в строчку (периодов всего 7). Период определяет количество энергетических уровней в атоме.

Малые периоды (1 – 3) включают только s - и p - элементы (элементы главных подгрупп) и состоят из одной строчки; большие (4 – 7) включают не только s - и p - элементы (элементы главных подгрупп), но и d - и f - элементы (элементы побочных подгрупп) и состоят из двух строчек.

3. Группы – химические элементы, расположенные в столбик (групп всего 8). Группа определяет количество электронов внешнего уровня для элементов главных подгрупп, а так же число валентных электронов в атоме химического элемента.

Главная подгруппа (А) – включает элементы больших и малых периодов (только s - и p - элементы).

Побочная подгруппа (В) – включает элементы только больших периодов (только d - или f - элементы).

4. Относительная атомная масса (A r ) – показывает, во сколько раз данный атом тяжелее 1/12 части атома 12 С, это безразмерная величина (для расчётов берут округлённое значение).

5. Изотопы – разновидность атомов одного и того же химического элемента, отличающиеся друг от друга только своей массой, с одинаковым порядковым номером.

Строение атома

Основные понятия:

1. Электронное облако – это модель квантовой механики, описывающая движение электрона в атоме.

2. Орбиталь (s , p , d , f ) – часть атомного пространства, в котором вероятность нахождения данного электрона наибольшая (~ 90%).

3. Энергетический уровень – это энергетический слой с определённым уровнем энергии находящихся на нём электронов.

Число энергетических уровней в атоме химического элемента равно номеру периода, в котором этот элемент расположен.

4. Максимально возможное число электронов на данном энергетическом уровне определяется по формуле:

N = 2 n 2 , где n – номер периода

5. Распределение орбиталей по уровням представлено схемой:

6. Химический элемент – это вид атомов с определённым зарядом ядра.

7. Состав атома :

Частица

Заряд

Масса

Кл

условные единицы

а.е.м.

Электрон (ē)

1.6 ∙ 10 -19

9.10 ∙ 10 -28

0.00055

Протон (p )

1.6 ∙ 10 -19

1.67 ∙ 10 -24

1.00728

Нейтрон (n )

1.67 ∙ 10 -24

1.00866

8. Состав атомного ядра :

·В состав ядра входят элементарные частицы –

протоны (p ) и нейтроны (n ).

·Т.к. практически вся масса атома сосредоточена в ядре, то округлённое значение A r химического элемента равно сумме протонов и нейтронов в ядре.

9. Общее число электронов в электронной оболочке атома равно числу протонов в ядре и порядковому номеру химического элемента.

Порядок заполнения уровней и подуровней электронами

I . Электронные формулы атомов химических элементов составляют в следующем порядке:

· Сначала по номеру элемента в таблице Д. И. Менделеева определяют общее число электронов в атоме;

· Затем по номеру периода, в котором расположен элемент, определяют число энергетических уровней;

· Уровни разбивают на подуровни и орбитали, и заполняют их электронами в соответствии Принципом наименьшей энергии

· Для удобства электроны можно распределить по энергетическим уровням, воспользовавшись формулой N =2n 2 и с учётом того, что:

1. у элементов главных подгрупп (s -;p -элементы) число электронов на внешнем уровне равно номеру группы.

2. у элементов побочных подгрупп на внешнем уровне обычно два электрона (исключение составляют атомы Cu , Ag , Au , Cr , Nb , Mo , Ru , Rh , у которых на внешнем уровне один электрон, у Pd на внешнем уровне ноль электронов);

3. число электронов на предпоследнем уровне равно общему числу электронов в атоме минус число электронов на всех остальных уровнях.

II . Порядок заполнения электронами атомных орбиталей определяется :

1.Принципом наименьшей энергии

Шкала энергий :

1s<2s<2p<3s<3p<4s<3d<4p<5s<4d<5p<6s<4f<5d<6p<7s…

2. Состояние атома с полностью или наполовину заполненным подуровнем (т. е. когда на каждой орбитали имеется по одному неспаренному электрону) является более устойчивым.

Этим объясняется «провал» электрона. Так, устойчивому состоянию атома хрома соответствует следующее распределение электронов:

Cr : 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 5 , ане 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 4 ,

т. е. происходит «провал» электрона с 4s -подуровня на 3d -подуровень.

III . Семейства химических элементов.

Элементы, в атомах которых происходит заполнение электронами s -подуровня внешнего s -элементами . Это первые 2 элемента каждого периода, составляющие главные подгруппы I иII групп.

Элементы, в атомах которых электронами заполняется p -подуровень внешнего энергетического уровня, называются p -элементами . Это последние 6 элементов каждого периода (за исключением I и VII ), составляющие главные подгруппы III - VIII групп.

Элементы, в которых заполняется d -подуровень второго снаружи уровня, называются d -элементами . Это элементы вставных декад IV , V , VI периодов.

Элементы, в которых заполняется f -подуровень третьего снаружи уровня, называются f -элементами . К f -элементам относятся лантаноиды и актиноиды.

Периодический закон Д. И. Менделеева

Свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов.

Современная формулировка периодического закона.

Свойства химических элементов и их соединений находятся в периодической зависимости от величины заряда ядер их атомов, выражающейся в периодической повторяемости структуры внешней валентной электронной оболочки.

Основные положения

1. В периоде слева направо:

2) Заряд ядра – увеличивается

3) Количество энергоуровней – постоянно

4) Количество электронов на внешнем уровне - увеличивается

5) Радиус атомов – уменьшается

6) Электроотрицательность – увеличивается

Следовательно, внешние электроны удерживаются сильнее, и металлические (восстановительные) свойства ослабевают, а неметаллические (окислительные) усиливаются.

2. В группе, в главной подгруппе сверху вниз:

1) Относительная атомная масса – увеличивается

2) Число электронов на внешнем уровне – постоянно

3) Заряд ядра – увеличивается

4) Количество энергоуровней – увеличивается

5) Радиус атомов - увеличивается

6) Электроотрицательность – уменьшается.

Следовательно, внешние электроны удерживаются слабее, и металлические (восстановительные) свойства элементов усиливаются, неметаллические (окислительные) - ослабевают.

3. Изменение свойств летучих водородных соединений:

1)в группах главных подгруппах с ростом заряда ядра прочность летучих водородных соединений уменьшается, а кислотные свойства их водных растворов усиливаются (основные свойства уменьшаются);

2)в периодах слева направо кислотные свойства летучих водородных соединений в водных растворах усиливаются (основные уменьшаются), а прочность уменьшается;

3)в группах с ростом заряда ядра в главных подгруппах валентность элемента в летучих водородных соединениях не изменяется, в периодах слева направо уменьшается от IV до I .

4. Изменение свойств высших оксидов и соответствующих им гидроксидов (кислородсодержащие кислоты неметаллов и основания металлов):

1) в периодах слева направо свойства высших оксидов и соответствующих им гидроксидов изменяются от основных через амфотерные к кислотным;

2)кислотные свойства высших оксидов и соответствующих им гидроксидов с ростом заряда ядра в периоде усиливаются, основные уменьшаются, прочность уменьшается;

3)в группах главных подгруппах у высших оксидов и соответствующих им гидроксидов с ростом заряда ядра прочность растёт, кислотные свойства уменьшаются, основные усиливаются;

4)в группах с ростом заряда ядра в главных подгруппах валентность элемента в высших оксидах не изменяется, в периодах слева направо увеличивается от I до VIII .

5. Завершенность внешнего уровня – если на внешнем уровне атома 8 электронов (для водорода и гелия 2 электрона)

6. Металлические свойства – способность атома отдавать электроны до завершения внешнего уровня.

7. Неметаллические свойства - способность атома принимать электроны до завершения внешнего уровня.

8. Электроотрицательность – способность атома в молекуле притягивать к себе электроны

9. Семейства элементов:

Щелочные металлы (1 группа «А») – Li , Na , K , Rb , Cs , Fr

Галогены (7 группа «А») – F , Cl , Br , I

Инертные газы (8 группа «А») – He , Ne , Ar , Xe , Rn

Халькогены (6 группа «А») – O , S , Se , Te , Po

Щелочноземельные металлы (2 группа «А») – Ca , Sr , Ba , Ra

10. Радиус атома – расстояние от ядра атома до внешнего уровня

Задания для закрепления:

"Свойства элементов, а потому и образуемых ими простых и сложных тел (веществ), стоят в периодической зависимости от их атомного веса".

Современная формулировка:

"свойства химических элементов (т.е. свойства и форма образуемых ими соединений) находятся в периодической зависимости от заряда ядра атомов химических элементов".

Физический смысл химической периодичности

Периодические изменения свойств химических элементов обусловлены правильным повторением электронной конфигурации внешнего энергетического уровня (валентных электронов) их атомов с увеличением заряда ядра.

Графическим изображением периодического закона является периодическая таблица. Она содержит 7 периодов и 8 групп.

Период - горизонтальные ряды элементов с одинаковым максимальным значением главного квантового числа валентных электронов.

Номер периода обозначает число энергетических уровней в атоме элемента.

Периоды могут состоять из 2 (первый), 8 (второй и третий), 18 (четвертый и пятый) или 32 (шестой) элементов, в зависимости от количества электронов на внешнем энергетическом уровне. Последний, седьмой период незавершен.

Все периоды (кроме первого) начинаются щелочным металлом (s - элементом), а заканчиваются благородным газом (ns 2 np 6 ).

Металлические свойства рассматриваются, как способность атомов элементов легко отдавать электроны, а неметаллические - присоединять электроны из-за стремления атомов приобрести устойчивую конфигурацию с заполненными подуровнями. Заполнение внешнего s - подуровня указывает на металлические свойства атома, а формирование внешнего p - подуровня - на неметаллические свойства. Увеличение числа электронов на p - подуровне (от 1 до 5) усиливает неметаллические свойства атома. Атомы с полностью сформированной, энергетически устойчивой конфигурацией внешнего электронного слоя (ns 2 np 6 ) химически инертны.

В больших периодах переход свойств от активного металла к благородному газу происходит более плавно, чем в малых периодах, т.к. происходит формирование внутреннего (n - 1) d - подуровня при сохранении внешнего ns 2 - слоя. Большие периоды состоят из четных и нечетных рядов.

У элементов четных рядов на внешнем слое ns 2 - электроны, поэтому преобладают металлические свойства и их ослабление с ростом заряда ядра невелико; в нечетных рядах формируется np - подуровень, что объясняет значительное ослабление металлических свойств.

Группы - вертикальные столбцы элементов с одинаковым числом валентных электронов, равным номеру группы. Различают главные и побочные подгруппы.

Главные подгруппы состоят из элементов малых и больших периодов, валентные электроны которых расположены на внешних ns - и np - подуровнях.

Побочные подгруппы состоят из элементов только больших периодов. Их валентные электроны находятся на внешнем ns - подуровне и внутреннем (n - 1) d - подуровне (или (n - 2) f - подуровне).

В зависимости от того, какой подуровень (s -, p -, d - или f -) заполняется валентными электронами, элементы периодической системы подразделяются на: s - элементы (элементы главной подгруппы I и II групп), p - элементы (элементы главных подгрупп III - VII групп), d - элементы (элементы побочных подгрупп), f - элементы (лантаноиды, актиноиды).

В главных подгруппах сверху вниз металлические свойства усиливаются, а неметаллические ослабевают. Элементы главных и побочных групп сильно отличаются по свойствам.

Номер группы показывает высшую валентность элемента (кроме O , F , элементов подгруппы меди и восьмой группы).

Общими для элементов главных и побочных подгрупп являются формулы высших оксидов (и их гидратов). У высших оксидов и их гидратов элементов I - III групп (кроме бора) преобладают основные свойства, с IV по VIII - кислотные.

Периодичность в изменении свойств элементов. Периодический закон Д.И. Менделеева

Периодическую систему химических элементов создал в 1869 году наш великий соотечественник Дмитрий Иванович Менделеев.

В отличие от своих предшественников, Менделеев сравнивал не только сходные, но главным образом несходные между собой элементы и их группы (например, щелочные металлы и галогены), располагая их на основе главной (известной к тому времени) характеристики элемента - атомного веса.

Формулировка закона в то время была такова:

Свойства химических элементов, а также свойства и формы их соединений находятся в периодической зависимости от их атомных весов.

Позже Менделеев использовал введенную им более фундаментальную, чем атомный вес, характеристику элементов, а именно их порядковый номер, который определяется положительным зарядом ядра, т.е. числом протонов в ядре атома. Были установлены закономерности изменения свойств элементов в периодах и группах.

Для описания и систематизации химических элементов необходимо знать их характеристики: порядковый номер (заряд ядра его атомов) и относительную атомную массу.

Из них заряд ядра атомов является общей, неизменной при химических реакциях главной характеристикой для определения элемента.

Для описания элементов, кроме перечисленных выше количественных характеристик, нужны и другие, в том числе качественные характеристики элемента. Таковыми являются электронное строение и свойства его атомов.

Особое значение имеют электроны, расположенные на внешнем электронном слое, валентные электроны. У элементов-металлов их обычно 1 - 2, реже 3, у неметаллов - 4 и больше. У элементов больших периодов побочных подгрупп валентными являются электроны не только внешнего, но и предвнешнего слоя. От валентных электронов зависит реакционная способность атомов к образованию химических связей с другими атомами, к образованию химических соединений.

Химическое соединение - это химически индивидуальное вещество, состоящее из химически связанных атомов одного в простом или нескольких в сложном веществе элементов, имеющее определённый состав.

Простые и сложные вещества - это формы реального существования элементов в природе. Характер элементов влияет на свойства образованных ими веществ, и наоборот, зная свойства веществ, можно судить о характере элемента.

Дмитрий Иванович Менделеев придавал большое значение знанию форм и свойств типичных кислородных и водородных соединений элемента для его характеристики. Под формой соединений он понимал сходство в составе типичных для группы элементов их соединений, выраженное общими формулами. Так, элементы главной подгруппы VI группы периодической системы имеют следующие формы кислородных и водородных соединений: RO3, H2R.

Например: оксид серы и сероводород.

Типичные металлические элементы образуют основные оксиды и гидроксиды, проявляя в этих формах соединений низкие значения валентности. У неметаллических элементов высшие кислородные соединения (оксиды и гидроксиды) имеют кислотный характер. Эти элементы образуют газообразные водородные соединения. Многие элементы проявляют промежуточные свойства.

Выведем закономерности изменения свойств элементов с увеличением их порядкового номера.

1.Важнейшие количественные характеристики элемента - заряд ядра его атомов и атомная масса - возрастают монотонно.

2.Структуры внешнего электронного слоя изменяются скачкообразно.

3.Периодически повторяются формы и свойства оксидов и гидроксидов элементов.

4.Периодически повышается валентность элементов по кислороду и уменьшается по водороду.

Какова зависимость между характеристиками элемента, меняющимися монотонно и периодически?

Рассмотрим эту связь на примере заряда ядра атомов и их внешних электронов. Для этого построим график. Отметим на горизонтальной линии заряд ядра атома, а на вертикальной - число электронов на внешнем слое атомов элементов.

Число электронов внешнего электронного слоя атомов элементов периодически изменяется при монотонном возрастании величины заряда ядра их атомов.

Открытие периодического закона ознаменовало начало новой эпохи в развитии химии - ее современного этапа. До этого накопленные в науке факты не имели внутренней связи.

Периодический закон раскрыл глубокую связь между элементами, позволил ученым предсказывать свойства еще не открытых элементов и их соединений и целенаправленно осуществлять поиск новых.

Дмитрий Иванович Менделеев не сомневался в достоверности открытого закона, твердо верил в его будущее, в его развитие. Незадолго до смерти он написал: «...периодическому закону будущее не грозит разрушением, а только надстройки и развитие обещает».

Периодический закон:

Утвердил глубокую внутреннюю связь между элементами;

Позволил ученым предположить, что все атомы построены по общему плану;

Тем самым создал предпосылку для перехода к новому этапу развития науки, к познанию внутренней структуры атомов - открытие электрона, радиоактивности, разработка теории строения атома и т.д.

Следующим этапом стало раскрытие физической сущности закона на основе теории строения атома.

Вы уже знакомы со строением атомов и знаете, что заряд ядра атома - его главная характеристика. Заряд ядра совпадает с порядковым номером элемента в периодической системе Менделеева.

Ученик Резерфорда английский учёный-физик Генри Мозли установил в 1913 году, что длина волны рентгеновского излучения у каждого элемента своя. Она увеличивается с возрастанием атомной массы. Мозли связал частоту этого излучения с порядковым номером элемента. Закон Мозли подтвердил, что изменение Менделеевым порядковых номеров элементов в периодической системе соответствовало последовательному увеличению зарядов ядер их атомов. Этот вопрос мы уже обсуждали при изучении изотопов.

В связи с новыми открытиями в области строения атома периодический закон принял следующую современную формулировку:

Свойства элементов, а также формы и свойства их соединений находятся в периодической зависимости от величины заряда ядра атома.

Почему свойства элементов и их соединений изменяются периодически?

В чем причина периодичности?

Ответ на данный вопрос также позволяет дать теория строения атома:

Величина заряда ядра - главная характеристика элемента, мера его индивидуальности. От этой характеристики элемента зависят все остальные его свойства, она определяет число электронов и их состояние в атоме.

Возрастание зарядов ядер атомов от первого до последнего элемента приводит к периодическому повторению электронных структур атомов и числа электронов на внешнем энергетическом уровне. В этом физический смысл периодического закона и причина периодичности изменения свойств элементов.

Периодическое изменение свойств элементов объясняется периодическим повторением числа электронов на внешнем энергетическом уровне и электронных структур атомов.

Теория строения атома способствовала развитию периодического закона и периодической системы химических элементов, определению их современного содержания. Она дала импульс к изучению внутреннего строения веществ, к открытию и получению новых элементов.


  • План.

  • 1.Периодический закон Д.И. Менделеева и его общенаучное и философское значение.

  • 2.Периодическая система и порядковый номер элемента как его важнейшая характеристика. Периоды и группы.

  • 3.Изменение свойств элементов в периодической системе.

  • 4.Расположение металлов и неметаллов в периодической системе.


1. Периодический закон (Д.И. Менделеев, 1869)

  • Свойства элементов, а также формы и свойства их соединений находятся в периодической зависимости от величины заряда ядер их атомов


Почему свойства элементов периодически повторяются?

  • С увеличением заряда ядра у элементов периодически повторяется количество и распределение валентных электронов, от которых в большой степени зависят свойства элементов


2. Периодическая система элементов

  • Это графическое изображение периодического закона. В периодической системе выделяют горизонтальное (период) и вертикальное (группа) направления.


Период

    Горизонтальный ряд элементов, у которых заполняются электронами одинаковое число энергетических уровней. Ш период: Na, Mg, Al, Si, P, S, Cl, Ar – у атомов данных элементов заполняется 3 энергетических уровня. В периодической системе 7 периодов: 1,2,3 – малые (состоят из одного ряда); 4,5,6,7 – большие (имеют по два ряда); 7-й период – незаконченный.


Группа

  • Вертикальный ряд элементов, имеющих одинаковое, равное номеру группы, количество валентных электронов, одинаковую максимальную валентность. В системе 8 групп. В зависимости от того, как распределяются валентные электроны у элементов, группа делится на две подгруппы: главную и побочную.


Подгруппа

  • Вертикальный ряд элементов, имеющих одинаковое число и одинаковое распределение валентных электронов, а следовательно и сходные свойства.


Главная подгруппа – группа «А»

  • Вертикальный ряд элементов, у которых все валентные электроны расположены на последнем уровне. В состав главной подгруппы входят элементы больших и малых периодов.


Побочная подгруппа «В»

  • Вертикальный ряд элементов, у которых независимо от номера группы, на последнем, уровне находится не более 2-х электронов, остальные валентные электроны расположены на предпоследнем уровне. В состав побочных подгрупп входят элементы только больших периодов


Периодическая система и строение атома

  • 1. Порядковый номер элемента указывает на положительный заряд ядра, число протонов в ядре, число электронов в атоме.

  • 2. Номер периода указывает на число энергетических уровней в атоме.

  • 3. Номера групп для всех элементов, за некоторым исключе­нием, указывают на число валентных электронов, для элементов главных подгрупп – на количество внешних электронов.


3.

  • ИЗМЕНЕНИЕ СВОЙСТВ ЭЛЕМЕНТОВ В ПЕРИОДИЧЕСКОЙ СИСТЕМЕ


Радиус атома, r

  • В периоде слева направо радиус атома несколько уменьшается, т.к. при одинаковом количестве энергетических уровней в результате увеличения заряда ядра электроны притягиваются сильнее. В главной подгруппе сверху вниз, с увеличением числа энергетических уровней радиус атома возрастает. В побочной подгруппе он изменяется нелинейно.


Энергия ионизации, ЭИ

  • Это энергия, необходимая для отрыва электрона от атома. Выражается в электрон-вольтах. В периоде с увеличением заряда ядра, числа, внешних электронов, уменьшением радиуса атома слева направо она возрастает, в главной подгруппе с увеличением радиуса атома сверху вниз убывает.


Энергия сродства к электрону, ЭС

  • Энергия, которая выделяется при присоединении к атому од­ного электрона. В периоде слева направо она возрастает, в главной подгруппе сверху вниз убывает. Выражается в электрон-вольтах.


Электроотрицательность, ЭО

  • Это способность атома в молекуле притягивать к себе электроны. В периоде слева направо возрастает, в главной подгруппе – сверху вниз убывает. Наибольшее значение электроотрицательности имеет фтор.


Число электронов на внешнем уровне

    В периоде слева направо увеличивается от I до 8 (исключение составляет 1-й период, от I до 2). У элементов главных подгрупп равно номеру группы (исключение Н, Не), у элементов побочных подгрупп на внешнем уровне не более 2-х электронов. При образовании химических соединений атомы стремятся к устойчивому состоянию - 8 электронов на внешнем уровне (для первых элементов – 2е). Достигается это путем отдачи или присоединения электронов, в зависимости от того, что атому сделать легче.


4.

  • МЕТАЛЛЫ И НЕМЕТАЛЛЫ

  • В ПЕРИОДИЧЕСКОЙ СИСТЕМЕ


Металлы

  • Элементы, атомы которых на внешнем энергетическом уровне содержат небольшое число электронов: 1, 2, 3. При образовании соединений металлы всегда отдают ē и имеют только положительный заряд.


Неметаллы

  • Элементы, атомы которых на внешнем энергетическом уровне содержат 4-8 электронов. При образовании соединений неметаллы могут как принимать электроны (возникает заряд отрицательный), так и отдавать электроны (возникает заряд положительный).

  • Если в периодической системе провести диагональ от бора (Z = 5) до астата (Z = 85), то вниз от диагонали все элементы-металлы, а вверх - неметаллы, за исключением элементов побочных подгрупп. У элементов побочных подгрупп на внешнем уровне не более 2-х ē, они все относятся к металлам.

  • Четкой границы между металлами и неметаллами нет, более правильно говорить о металличности и неметалличности элемента.


Металличность

  • Способность атома отдавать электроны. В периоде слева направо с увеличением числа ē да внешнем уровне металличность ослабевает. В главных подгруппах сверху вниз металличность возрастает, т.к. увеличивается радиус атома, прочность связи внешних ē с ядром уменьшается, способность отдавать ē возрастает.


Неметалличность

  • Способность атома присоединять электроны.

  • В периоде слева направо с увеличением числа е на внешнем уровне возрастает; в главной подгруппе сверху вниз с увеличением радиуса атома ослабевает.


  • Таким образом, каждый период за исключением первого, начинается активным металлом (щелочным), заканчивается активным неметаллом (галогеном) и инертным газом. Самый активный металл – франций, самый активный неметалл – фтор.


Согласно периодическому закону Д.И. Менделеева, все свойства элементов при увеличении поряд­ко­вого номера в периодической системе изменяются не непрерывно, а периодически, через определённое число элементов, повторяются. Причина периодического характера изменения свойств элементов заключается в периодическом повторении аналогичных электронных конфигураций валентных подуровней: всякий раз, как только повторяется какая-либо электронная конфигурация валентных подуровней, например, рассмотренная в примере 3.1.3.конфигурация ns 2 np 2 , элемент по своим свойствам во многом повторяет предшествующие эле­мен­ты аналогичного электронного строения.

Важнейшим химическим свойством любого элемента является способность его атомов отдавать или присоединять электроны, характеризующая, в первом случае восстановительную, во втором – оки­слительную активность элемента. Количественной характеристикой восстановительной активности элемента является энергия (потенциал) ионизации, окислительной – сродство к электрону.

Энергия (потенциал) ионизации – это энергия, которую необходимо затратить для отрыва и уда­ле­ния электрона из атома 6 . Понятно, чем меньше энергия ионизации. Тем сильнее выражена способность атома отдавать электрон и, следовательно, выше восстановительная активность элемента. Энергия ионизации, как и всякое свойство элементов, при увеличении порядкового номера в периодической системе изменяется не моно­тонно, а периодически. В периоде, при фиксированном числе электронных слоёв, энергия ионизации увели­чи­ва­ется вместе с увеличением порядкового номера из-за увеличения силы притяжения внешних электронов к атом­ному ядру в связи с увеличением заряда ядра. При переходе к первому элементу следующего периода про­ис­хо­дит резкое уменьшение энергии ионизации – настолько сильное, что энергия ионизации становится меньше энергии ионизации предшествующего аналога в подгруппе. Причиной этого является резкое уменьшение силы притяжения удаляемого внешнего электрона к ядру ввиду значительного возрастания атомного радиуса из-за уве­личения количества электронных слоёв при переходе к новому периоду. Итак, при увеличении поряд­ко­во­го номера, в периоде энергия ионизации увеличивается 7 , а в главных подгруппах уменьшается. Так что эле­менты с наибольшей восстановительной активностью расположены в начале периодов и внизу главных под­групп.

Сродство к электрону – это энергия, которая выделяется при присоединении атомом электрона . Чем больше сродство к электрону, тем сильнее выражена способность атома присоединять электрон и, сле­до­ва­тельно, тем выше окислительная активность элемента. При увеличении порядкового номера, в периоде срод­ство к электрону увеличивается ввиду усиления притяжения электронов внешнего слоя к ядру, а в груп­пах элементов происходит уменьшение сродства к электрону в связи с уменьшением силы притяжения внеш­них электронов к ядру и из-за увеличения атомного радиуса. Таким образом, элементы с наибольшей окислительной активностью расположены в конце периодов 8 и вверху групп периодической системы.

Обобщённой характеристикой окислительно-восстановительных свойств элементов является электро­отрицательность – полусумма энергии ионизации и сродства к электрону. Исходя из закономерности изме­нения энергии ионизации и сродства к электрону в периодах и группах периодической системы, нетрудно вы­вес­ти, что в периодах электроотрицательность увеличивается слева направо, в группах уменьшается сверху вниз. Следовательно, чем больше электроотрицательность тем сильнее выражена окислительная активность элемента и тем слабее его восстановительная активность.

Пример 3.2.1. Сравнительная характеристика окислительно-восстановительных свойств элементов IA – и VA -группы 2-го и 6-го периодов.

Т.к. в периодах энергия ионизации, сродство к электрону и электроотрицательность увеличиваются сле­ва направо, а в группах уменьшаются сверху вниз, среди сравниваемых элементов наибольшей окислительной ак­тивностью обладает азот, а наиболее сильным восстановителем является франций.

Элементы, атомы которых способны проявлять только восстановительные свойства, принято на­зывать металлическими (металлами). Атомы неметаллических элементов (неметаллов) могут проявлять и восстановительные свойства, и окислительные свойства, но окислительные свойства для них более ха­рактерны.

Металлы – это, как правило, элементы с небольшим числом внешних электронов. К числу металлов от­носятся все элементы побочных групп, лантаноиды и актиноиды, т.к. число электронов во внешнем слое атомов этих элементов не превышает 2. Металлические элементы содержатся также в главных подгруппах. В главных подгруппах 2-го периода LiиBe– типичные металлы. Во 2-м периоде потеря металлических свойств про­ис­хо­дит при поступлении во внешний электронный слой третьего электрона – при переходе к бору. В главных под­группах нижележащих периодов происходит последовательное смещение границы между металлами и не­ме­тал­лами на одну позицию вправо в связи с усилением восстановительной активности элементов из-за увеличения атомного радиуса. Так, в 3-м периоде условная граница делящая металлы и неметаллы, проходит уже междуAlиSi, в 4-м периоде первый типичный неметалл – мышьяк и т.д.



Похожие публикации