Защита асинхронного двигателя от перегрузки. Способы защиты электродвигателей от перегрузок

ельных тепловых перегрузках. Защита от перегрузки должна применяться только для электродвигателей тех рабочих механизмов, у которых возможны ненормальные увеличения нагрузки при нарушениях рабочего процесса.

Аппараты защиты от перегрузки (тепловые и температурные реле, электромагнитные реле, автоматические выключатели с тепловым расцепителем или с часовым механизмом) при возникновении перегрузки отключают двигатель с определенной выдержкой времени, тем большей, чем меньше перегрузка, а в ряде случаев, при значительных перегрузках, - и мгновенно.

Рис.6 Обмоточный цех

Защита асинхронных электродвигателей от понижения или исчезновения напряжения

Защита от понижения или исчезновения напряжения (нулевая защита) выполняется с помощью одного или нескольких электромагнитных аппаратов, действует на отключение двигателя при перерыве питания или снижении напряжения сети ниже установленного значения и предохраняет двигатель от самопроизвольного включения после ликвидации перерыва питания или восстановления нормального напряжения сети.

Специальная защита от работы на двух фазах предохраняет двигатель от перегрева, а также от «опрокидывания», т. е. остановки под током вследствие снижения момента, развиваемого двигателем, при обрыве в одной из фаз главной цепи. Защита действует на отключение двигателя. В качестве аппаратов защиты применяются как тепловые, так и электромагнитные реле. В последнем случае защита может не иметь выдержки времени.

Рис.7 Замена, демонтаж и ТО системы вентиляции «Климат-47»

Другие виды электрической защиты асинхронных электродвигателей

Существуют и некоторые другие, реже встречающиеся виды защиты (от повышения напряжения, однофазных замыканий на землю в сетях с изолированной нейтралью, увеличения скорости вращения привода и т. п.).

Электрические аппараты, применяемые для защиты электродвигателей

Аппараты электрической защиты могут осуществлять один или сразу несколько видов защит. Так, некоторые автоматические выключатели обеспечивают защиту от коротких замыканий и от перегрузки. Одни из аппаратов защиты, например плавкие предохранители, являются аппаратами однократного действия и требуют замены или перезарядки после каждого срабатывания, другие, такие как электромагнитные и тепловые реле, - аппараты многократного действия. Последние различаются по способу возврата в состояние готовности на аппараты с самовозвратом и с ручным возвратом.

Выбор вида электрической защиты электродвигателей

Выбор того или иного вида защиты или нескольких одновременно производится в каждом конкретном случае с учетом степени ответственности привода, его мощности, условий работы и порядка обслуживания (наличия или отсутствия постоянного обслуживающего персонала).Большую пользу может принести анализ данных по аварийности электрооборудования в цехе, на строительной площадке, в мастерской и т. п., выявление наиболее часто повторяющихся нарушений нормальной работы двигателей и технологического оборудования. Всегда следует стремиться к тому, чтобы защита была по возможности простой и надежной в эксплуатации.

Для каждого двигателя независимо от его мощности и напряжения должна быть предусмотрена защита от коротких замыканий. Здесь нужно иметь в виду следующие обстоятельства. С одной стороны, защиту нужно отстроить от пусковых и тормозных токов двигателя, которые могут в 5-10 раз превышать его номинальный ток. С другой стороны, в ряде случаев коротких замыканий, например при витковых замыканиях, замыканиях между фазами вблизи от нулевой точки статорной обмотки, замыканиях на корпус внутри двигателя и т. п., защита должна срабатывать при токах, меньших пускового тока. В таких случаях рекомендуется использовать устройство плавного пуска (софтстартер).Одновременное выполнение этих противоречивых требований с помощью простых и дешевых средств защиты представляет большие трудности. Поэтому система защиты низковольтных асинхронных двигателей строится при сознательном допущении, что при некоторых отмеченных выше повреждениях в двигателе последний отключается защитой не сразу, а лишь в процессе развития этих повреждений, после того как значительно возрастет ток, потребляемый двигателем из сети.

Одно из важнейших требований к устройствам защиты двигателей - четкое действие ее при аварийных и ненормальных режимах работы двигателей и вместе с тем недопустимость ложных срабатываний. Поэтому аппараты защиты должны быть правильно выбраны и тщательно отрегулированы.

ГУП ППЗ «Благоварский»

ГУП "Племптицезавод Благоварский" является правопреемником птицефабрики Благоварская, которая была введена в строй в 1977 году как товарное хозяйство по производству утиного мяса. В 1995 году птицефабрика получила статус государственного племенного птицеводческого завода с возложением функций селекционно-генетического центра по утководству. Племптицезавод Благоварский расположен вблизи села Языково, Благоварского района республики Башкортостан.

Общая земельная площадь составляет 2108 га, из них пашни занимают1908 га, а сенокосы и пастбища 58 га. Среднее поголовье уток 111,6 тысяч голов, в том числе 25,6 тысяч голов утки-несушки.

В коллективе трудится 416 человек, из них в аппарате управления 76.

В структуре завода функционируют:

Цех родительского стада уток: имеет 30корпусов с количеством птицемест на 110 тысяч голов.

Цех выращивания ремонтного молодняка: имеет 6 корпусов с количеством птицемест на 54 тысячи голов.

Инкубатории: 3 цеха с общей мощностью 695520 шт. яиц на одну закладку.

Цех убоя с производительностью 6-7 тысяч голов за смену.

Цех кормоприготовления с производительностью 50 тонн за смену с емкостью 450 тонн.

Автотранспортный цех: автомобили - 53, трактора - 30, сельхозмашины 27.

В 1998 году на базе племптицезавода создана научно-производственная система по утководству, объединяющая работу птицехозяйств, занимающихся разведением уток в 24 регионах российской федерации. Через научно-производственную систему реализуется более 20 млн. штук племенных яиц и 15 млн. голов молодняка уток. Племматериал так же поставляется в такие страны ближнего зарубежья как Казахстан и Украина.

Утки созданные селекционерами ГУП Племптицезавода Благоварский получили повсеместное распространение в Российской Федерации, их успешно разводят как в Краснодарском, так и в Приморском краях. Использование уток селекции племзавода в структуре общегопоголовья уток России составляет около 80%.

ДневникДатаРабочее местоВид работыТехнология выполнения работыПодпись руков.Примечание26.06.12-27Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Разборка и сборка 3-х фазных асинхронных двигателей. 28.06.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Замена автоматических выключателей. 29.06.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Прокладка кабеля. 30.06.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Прокладка кабеля. 01.07.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Сборка зернодробилки, монтаж водонагревателя. 04.07.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Замена, демонтаж и ТО системы вентиляции «Климат-47» 05.07.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Замена, демонтаж и ТО системы вентиляции «Климат-47» 06.07.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Монтаж системы освещений. 07.07.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Монтаж, ТО системы вентиляции «Климат-47» 08.07.12-09.07.12Благоварский р-н, ГУП « ППЗ Благоварский» Плановая работа. Очистка и уборка от зеленых насаждений вокруг охраняемой зоны ЛЭП. 10.07.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Установка дизельной электростанции.

ДневникДатаРабочее местоВид работыТехнология выполнения работыПодпись руков.Примечание 11.07.12-15.07.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Монтаж, ТО системы вентиляции «Климат-47» 16.07.12-17.07.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Замена автоматических выключателей. 18.07.12-22.07.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Замена, демонтаж и ТО системы вентиляции «Климат-47» 23.07.12Благоварский р-н, ГУП « ППЗ Благоварский» Плановая работа. Очистка и уборка от зеленых насаждений вокруг охраняемой зоны ЛЭП. 24.07.12-29.07.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Монтаж и запуск АВМ. 30.07.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Разборка и сборка 3-х фазных асинхронных двигателей. 31.07.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Монтаж системы освещений. 1.08.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Техническое обслуживание трансформаторов. 2.08.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Замена, демонтаж и ТО системы вентиляции «Климат-47» 3.08.12-4.08.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Замена автоматических выключателей.

Начало практики 26.06.12 Конец практики 04.08.12

ЗАКЛЮЧЕНИЕ

В результате прохождения производственной эксплуатационной практики в ГУП ППЗ «Благоварский» мною были изучены структура предприятия, схема сети электроснабжения предприятии, а так же собран материал по тем

В промышленности и различных бытовых приборах используется большое количество электродвигателей. Для того чтобы избежать сбоев в работе устройства и его дорогостоящего ремонта, необходимо оснастить его прибором защиты от перегрузки.

Принцип работы двигателя

Производителеями рассчитано, что при номинальном токе двигатель никогда не перегреется

Наиболее распространены электродвигатели переменного тока.

Принцип их действия основан на использовании законов Фарадея и Ампера:

  • В соответствии с первым в проводнике, который находится в изменяющемся магнитном поле, индуцируется ЭДС. В двигателе такое поле генерируется переменным током, протекающим по обмоткам статора, а ЭДС появляется в проводниках ротора.
  • По второму закону на ротор, по которому протекает ток, будет воздействовать сила, перемещающая его перпендикулярно электромагнитному полю. В результате этого взаимодействия начинается вращение ротора.

Существуют асинхронные и синхронные электродвигатели такого типа. Чаще всего используются асинхронные двигатели, у которых в качестве ротора используется короткозамкнутая конструкция из стержней и колец.

Для чего нужна защита

В процессе работы двигателя могут возникнуть различные ситуации, связанные с его перегрузкой, что может привести к аварии, это:

  • пониженное напряжение питания;
  • обрыв фазы;
  • перегрузка приводимых в действие механизмов;
  • слишком долгий процесс запуска или самозапуска.

По сути, защита электродвигателя от перегрузок заключается в том, чтобы своевременно обесточить двигатель

При возникновении таких нештатных ситуаций возрастает ток в обмотках. Например, при обрыве фазы питания ток статора может увеличиться от 1,6 до 2,5 раз относительно номинального тока. Это приводит к перегреву двигателя, нарушению изоляции обмоток, короткому замыканию (КЗ) и в некоторых случаях к пожару.

Как выбрать защиту электродвигателя от перегрузки

Защита электродвигателя от перегрузки может осуществляться с помощью различных устройств. К ним относятся:

  • плавкие предохранители с выключателем;
  • реле защиты;
  • тепловые реле;
  • цифровые реле.

Наиболее простой метод - применение плавких предохранителей, которые срабатывают при возникновении КЗ в схеме питания двигателя. Их недостатком является чувствительность к большим пусковым токам двигателя и необходимость установки новых предохранителей после срабатывания.

Плавкий предохранительный выключатель - это аварийный выключатель и плавкий предохранитель, объединённые в едином корпусе

Токовое реле защиты может выдерживать временные токовые перегрузки, возникающие при пуске двигателя, и срабатывает при опасном длительном увеличении тока потребления двигателя. После устранения перегрузки реле может вручную или автоматически подключать цепь питания.

Тепловые реле используются в основном внутри двигателя. Такое реле может представлять собой биметаллический датчик или терморезистор и устанавливаться на корпусе двигателя или непосредственно на статоре. При слишком высокой температуре двигателя реле срабатывает и обесточивает цепь питания.

Наиболее продвинутым является использование новейших систем защиты с применением цифровых методов обработки информации. Такие системы наряду с защитой двигателя от перегрузки выполняют дополнительные функции - ограничивают число переключений двигателя, с помощью датчиков оценивают температуру статора и подшипников ротора, определяют сопротивление изоляции устройства. Они могут быть использованы также для диагностики неисправностей системы.

Выбор того или иного метода защиты двигателя зависит от условий и режимов его работы, а также от ценности системы, в которой используется устройство.

Надежная и бесперебойная работа двигателя обеспе­чивается в первую очередь правильным выбором его номинальной мощности, соблюдением необходимых тре­бований при проектировании электрической схемы, монтаже и эксплуатации электропривода. Однако даже для правильно спроектированных и эксплуатируемых электроприводов всегда остается опас­ность возникновения аварийных и ненормальных для двигателя режимов. На этот случай должны быть предусмотрены средства для ограничения развития ава­рий и предотвращения преждевременного выхода оборудования из строя.

Главным и наиболее действенным средством являет­ся электрическая защита двигателей, выпол­няемая в соответствии с Правилами устройства электро­установок.

В зависимости от характера возможных поврежде­ний и ненормальных режимов работы, различают несколько основных наиболее распространенных видов электрической защиты асинхронных двигателей.

Максимально-токовая защита, именуемая в дальнейшем для краткости максимальной защитой. Аппараты, осуществляющие максимальную защиту (плавкие предохранители, авто­матические выключатели с электромагнитным расцепителем), практически мгновенно, т. е. без выдержки вре­мени, отключает двигатель от сети при появлении в главной цепи или в цепи управления токов короткого замыкания или ненормально больших толчков тока.

Защита от перегрузки, или тепловая защита, предохраняет двигатель от недопустимого перегрева при сравнительно небольших по величине, но продолжительных перегрузках. Аппараты тепловой за­щиты ( , автоматические выключатели с тепловым расцепителем) при возникновении перегруз­ки отключают двигатель с определенной выдержкой вре­мени, тем большей, чем меньше перегрузка.

Защита от работы на двух фазах предохраняет двигатель от недопустимого перегрева, который может наступить вследствие обрыва провода или перегорания предохранителя в одной из фаз глав­ной цепи. Защита действует на отключение двигателя. В качестве применяются как тепло­вые, так и электромагнитные реле. В последнем случае защита может не иметь выдержки времени.

Защита минимального напряжения (нулевая защита) выполняется с помощью одного или нескольких аппаратов, действует на отключение дви­гателя при снижении напряжения сети ниже установленного значения, предотвращая возможный перегрев двигателя и опасность его «опрокидывания», т. е. оста­новки вследствие снижения электрического момента. Нулевая защита предохраняет также двигатель от само­произвольного включения после перерыва питания.

Кроме того, существуют и некоторые другие, реже встречающиеся виды защиты (от повышения напряже­ния, однофазных замыканий на землю в сетях с изоли­рованной нейтралью, увеличения скорости вращения привода и т. п.).

Аппараты электрической защиты могут осуще­ствлять один или сразу несколько видов защиты. Так, некоторые автоматические выключатели с комбиниро­ванным расцепителем обеспечивают максимальную за­щиту, защиту от перегрузки и от работы на двух фазах.

Одни из аппаратов защиты, например плавкие предохранители, являются аппаратами однократного действия и требуют замены после каждого срабатыва­ния. Другие, такие как электромагнитные и тепловые реле, - аппараты многократного действия. Последние различаются по способу возврата в состояние готовности на аппараты с самовозвратом и с ручным воз­вратом.

Выбор того или иного вида защиты или нескольких одновременно производится в каждом конкретном слу­чае с учетом степени ответственности привода, его мощ­ности и условий работы. Большую пользу могут при­нести анализ данных по аварийности электрооборудова­ния в цехе, на строительной площадке, в мастерской и т. п. определение наиболее часто повторяющихся на­рушений нормальной работы двигателей и технологиче­ского оборудования.

Существенное значение имеют правильный выбор и настройка аппаратов защиты. Например, иногда наблю­дается повышенный выход из строя двигателей из-за работы на двух фазах вследствие сгорания плавкой вставки в одной фазе. Но во многих случаях сгорание вставки происходит не в результате однофазного корот­кого замыкания (пробоя на корпус), а вызвано непра­вильным выбором вставок, установкой в разных фазах случайно найденных предохранителей с разными токами расплавления вставок.

Опыт многих предприятий пока­зывает, что при высоком качестве ремонта двигателей, тщательном выполнении монтажа, надлежащем уходе за контактами пускателей и контакторов и правильном выборе плавких вставок работа двигателей на двух фа­зах практически исключается и установки специальной защиты не требуется.

Наверно все знают, что различные устройства работают на основе электрических двигателей. Но для чего нужна защита электродвигателей осознает лишь малая часть пользователей. Оказывается они могут сломаться в результате различных непредвиденных ситуаций.

Чтобы избежать проблем с высокими затратами на ремонт, неприятных простоев и дополнительных материальных потерь используются качественные защитные устройства. Далее разберемся в их устройстве и возможностях.

Как создается защита для электродвигателя?

Постепенно рассмотрим основные устройства защиты электродвигателей и особенности их эксплуатации. Но сейчас расскажем об трех уровнях защиты:

  • Внешняя версия защиты для предохранения от короткого замыкания. Обычно относится к разным видам либо представлена в виде реле. Они обладают официальным статусом и обязательны к установке согласно нормам безопасности на территории РФ.
  • Внешняя версия защиты электродвигателей от перегрузки помогает предотвратить опасные повреждения либо критические сбои в процессе работы.
  • Встроенный тип защиты спасет в случае заметного перегрева. И это защитит от критических повреждений либо сбоев в процессе эксплуатации. В этом случае обязательны выключатели внешнего типа иногда применяется реле для перезагрузки.


Из-за чего отказывает электродвигатель?

В процессе эксплуатации иногда появляются непредвиденные ситуации, останавливающие работу двигателя. Из-за этого рекомендуется заранее обеспечить надежную защиту электродвигателя.

Можете ознакомиться с фото защиты электродвигателя различного типа чтобы иметь представление о том, как она выглядит.

Рассмотрим случаи отказа электродвигателей в которых с помощью защиты можно избежать серьезных повреждений:

  • Недостаточный уровень электрического снабжения;
  • Высокий уровень подачи напряжения;
  • Быстрое изменение частоты подачи тока;
  • Неправильный монтаж электродвигателя либо хранения его основных элементов;
  • Увеличение температуры и превышение допустимого значения;
  • Недостаточная подача охлаждения;
  • Повышенный уровень температуры окружающей среды;
  • Пониженный уровень атмосферного давления, если эксплуатация двигателя происходит на увеличенной высоте на основе уровня моря;
  • Увеличенная температура рабочей жидкости;
  • Недопустимая вязкость рабочей жидкости;
  • Двигатель часто выключается и включается;
  • Блокирование работы ротора;
  • Неожиданный обрыв фазы.

Чтобы защита электродвигателей от перегрузки справилась с перечисленными проблемами и смогла защитить основные элементы устройства необходимо использовать вариант на основе автоматического отключения.

Часто для этого используется плавкая версия предохранителя, поскольку она отличается простотой и способна выполнить много функций:

Версия на основе плавкого предохранительного выключателя представлена аварийным выключателем и плавким предохранителем, соединенных на основе общего корпуса. Выключатель позволяет размыкать либо замыкать сеть с помощью механического способа, а плавкий предохранитель создает качественную защиту электродвигателя на основе воздействия электрического тока. Однако выключателем пользуются в основном для процесса сервисного обслуживания, когда необходимо остановить передачу тока.

Плавкие версии предохранителей на основе быстрого срабатывания считаются отличными защитниками от коротких замыканий. Но непродолжительные перегрузки могут привести к поломке предохранителей этого вида. Из-за этого рекомендуется использовать их на основе воздействия незначительного переходного напряжения.

Плавкие предохранители на основе задержки срабатывания способны защитить от перегрузки либо различных коротких замыканий. Обычно они способны выдержать 5-краткое увеличение напряжения в течение 10-15 секунд.

Важно: Автоматические версии выключателей отличаются по уровню тока для срабатывания. Из-за этого лучше использовать выключатель способный выдержать максимальный ток в процессе короткого замыкания, появляющегося на основе данной системы.

Тепловое реле

В различных устройствах используется тепловое реле для защиты двигателя от перегрузок под воздействием тока либо перегрева рабочих элементов. Оно создается с помощью металлических пластин, обладающих различным коэффициентом расширения под воздействием тепла. Обычно его предлагают в связке с магнитными пускателями и автоматической защитой.

Автоматическая защита двигателя

Автоматы для защиты электродвигателей помогают обезопасить обмотку от появления короткого замыкания, защищают от нагрузки либо обрыва любой из фаз. Их всегда используют в качестве первого звена защиты в сети питания мотора. Потом используется магнитный пускатель, если необходимо он дополняется тепловым реле.

Каковы критерии выбора, подходящего автомата:

  • Необходимо учитывать величину рабочего тока электродвигателя;
  • Количество, использующихся обмоток;
  • Возможность автомата справляться с током в результате короткого замыкания. Обычные версии работают на уровне до 6 кА, а лучшие до 50 кА. Стоит учитывать и скорость срабатывания у селективных менее 1 секунды, нормальных меньше 0,1 секунды, быстродействующих около 0,005 секунды;
  • Размеры, поскольку большая часть автоматов можно подключать с помощью шины на основе фиксированного типа;
  • Вид расцепления цепи – обычно применяется тепловой либо электромагнитный способ.


Универсальные блоки защиты

Различные универсальные блоки защиты электродвигателей помогают уберечь двигатель с помощью отключения от напряжения либо блокированием возможности запуска.

Они срабатывают в таких случаях:

  • Проблемы с напряжением, характеризующиеся скачками в сети, обрывами фаз, нарушением чередования либо слипания фаз, перекосом фазного или линейного напряжения;
  • Механической перегруженности;
  • Отсутствие крутящего момента для вала ЭД;
  • Опасных эксплуатационной характеристике изоляции корпуса;
  • Если произошло замыкание на землю.

Хотя защита от понижения напряжения, может быть, организована и другими способами мы рассмотрели основные из них. Теперь у вас есть представление о том зачем необходимо защищать электродвигатель, и как это осуществляется с помощью различных способов.

Фото защиты электродвигателя

ФPAГMEHT КНИГИ (...) ТЕХНИКО-ЭКОНОМИЧЕСКИЕ ФАКТОРЫ, ВЛИЯЮЩИЕ НА ВЫБОР СРЕДСТВ ЗАЩИТЫ
Анализ режимов работы асинхронного двигателя показывает, что в производственных условиях могут быть разнообразные аварийные ситуации, влекущие за собой разные последствия для двигателя. Средства защиты не обладают достаточной универсальностью для того, чтобы во всех случаях, независимо от причины и характера аварийного режима, отключить двигатель при возникновении любой опасной для него ситуации. Каждый аварийный режим имеет свои особенности. Применяемые в настоящее время защитные аппараты имеют недостатки и достоинства, проявляющиеся в определенных условиях. Следует также принимать во внимание и экономическую сторону вопроса. Выбор средств защиты должен опираться на технико-экономический расчет, в котором необходимо учитывать стоимость самого защитного аппарата, затраты на его эксплуатацию, величину ущерба, который наносит авария двигателя. При этом следует иметь в виду, что надежность действия защиты зависит также от характеристик рабочей машины и режима ее работы. Наибольшей универсальностью обладает температурная защита. Но она стоит дороже, чем другие средства защиты, и сложнее по устройству. Поэтому ее применение оправдано в тех случаях, когда другие виды защиты либо не могут обеспечить надежную работу, либо защищаемая установка предъявляет повышенные требования к надежности действия защиты, например из-за большого ущерба при аварии двигателя.
Тип защитного аппарата следует выбирать при проектировании технологической установки с учетом всех особенностей ее работы. Эксплуатационный персонал должен получать укомплектованное всем необходимым оборудование. Однако в некоторых случаях при переоборудовании или перестройке технологической линии
эксплуатационному персоналу нео ходимо самому решать вопрос, какой тип защиты целесообразно применить в конкретном случае. Для этого необходимо проанализировать возможные аварийные режимы установки и выбрать требуемый защитный аппарат. В настоящей брошюре мы не будем подробно рассматривать методику выбора защиты двигателей от перегрузки. Ограничимся лишь некоторыми рекомендациями общего характера, которые могут быть полезны для эксплуатационного персонала сельских электроустановок.
Прежде всего необходимо установить характерные для данной установки аварийные режимы. Одни из них возможны во всех установках, а другие только в некоторых. Перегрузки при потере фазы независимы от рабочей машины, они могут возникать во всех установках. Тепловые реле и встроенная температурная защита вполне удовлетворительно выполняют защитные функции при этом виде аварийного режима. Применение специальной защиты от потери фазы дополнительно к защите от перегрузки должно быть обосновано. В большинстве случаев она не требуется. Достаточны тепловые реле и температурная защита. Необходимо систематически проверять их состояние и регулировать. Лишь в тех случаях, когда авария двигателя может привести к большому ущербу, можно использовать специальную защиту от перегрузки при потере фазы.
Тепловые реле недостаточно эффективны как средство защиты от перегрузок при переменном (с большими колебаниями нагрузок), при повторно-кратковременном и кратковременном режимах работы. В этих случаях более эффективна встроенная температурная защита. В случае машин с тяжелым пуском также следует отдать предпочтение встроенной температурной защите.
Из имеющегося разнообразия средств защиты асинхронного двигателя широкое применение нашли только два устройства: тепловые реле и встроенная температурная защита. Эти два устройства являются конкурирующими при проектировании электроприводов сельскохозяйственных машин. Для выбора типа защиты проводят технико-экономический расчет по методу приведенных затрат. Не останавливаясь на точном расчете по этому методу, рассмотрим применение его основных положений для выбора наивыгоднейшего варианта защиты.
Предпочтение следует отдавать варианту, при котором будут наименьшие затраты на приобретение, монтаж и эксплуатацию рассматриваемых устройств. При этом должен быть учтен ущерб, который несет производство от недостаточной надежности действия защиты. Затраты, приведенные к одному году использования, определяют по формуле
где К - стоимость двигателя и защитного устройства, включая затраты на их транспортировку и монтаж;
кэ - коэффициент, учитывающий отчисления на амортизацию, обновление оборудования, ремонт;
Э - эксплуатационные расходы (стоимость обслуживания средств защиты, потребляемой электроэнергии и др.);
У - ущерб, который несет производство из-за отказа или неправильного действия защиты.
Величина ущерба складывается из двух слагаемых
где Ут - технологический ущерб, вызванный аварией двигателя (стоимость недоотпущенной или испорченной продукции);
Кд - стоимость замены вышедшего из строя двигателя и защитного устройства, включая затраты на демонтаж старого и монтаж нового оборудования;
р0 - вероятность отказа (неправильного действия) защиты, приведшего к аварии двигателя.
Эксплуатационные расходы значительно меньше остальных составляющих приведенных затрат, поэтому ими можно пренебречь в дальнейших расчетах. Стоимость двигателя со встроенной защитой и аппаратуры встроенной защиты больше стоимости обычного двигателя и теплового реле. Но первая из рассматриваемых защит более совершенна. Она действует эффективно практически при всех аварийных ситуациях, поэтому ущерб от ее неправильного действия будет меньше. Затраты на более дорогую защиту будут оправданы лишь в том случае, если ущерб снизится на величину большую, чем дополнительные затраты на более совершенную защиту.
Величина технологического ущерба зависит от характера технологического процесса и времени простоя оборудования. В отдельных случаях ее можно не учитывать. Это относится прежде всего к отдельно работающим установкам, простои которых на время устранения аварии не оказывают заметного влияния на все производство. По мере насыщения производства средствами механизации и -электрификации повышается уровень требований к надежности работы оборудования. Простои из-за неисправности электрооборудования приводят к большим ущербам, а в некоторых случаях становятся недопустимыми. Пользуясь некоторыми усредненными данными, можно определить сферу экономически оправданного применения более сложных устройств защиты.
Величина вероятности отказа защиты р0 зависит от конструкции и качества изготовления аппаратуры, а также от характера аварийного режима, в котором может оказаться двигатель. Как было показано выше, при некоторых аварийных режимах тепловые реле не обеспечивают надежное отключение двигателя. В этом случае лучше встроенная температурная защита. Опыт использования этой защиты показывает, что величину вероятности отказа этой защиты рвз можно принять равной 0,02. Это означает, что существует вероятность того, что из 100 таких устройств две могут не сработать, вследствие чего произойдет авария двигателя.
Пользуясь формулами (40) и (41), определим, при каком значении вероятности отказов тепловых реле ртр приведенные затраты будут одинаковыми. Это даст возможность оценить сферу применения того или иного устройства. Если пренебречь эксплуатационными затратами, можно написать
где индексы вз и тр соответственно означают встроенную защиту и тепловое реле. Отсюда получим
Для того чтобы представить порядок требуемого уровня надежности действия теплового реле, рассмотрим пример.
Определим предельно допустимое значение ртр теплового реле ТРН-10 с биметаллическими элементами в комплекте с двигателем А02-42-4СХ путем сравнения с вариантом применения двигателя А02-42-4СХТЗ с встроенной температурной защитой УВТЗ, для которого принимаем рвз=0,02. Технологический ущерб принимаем равным нулю. Стоимость двигателя с тепловым реле, включая затраты на транспортировку и монтаж, составляет 116 руб., а для варианта с защитой УВТЗ - 151 руб. Стоимость замены вышедшёго из строя двигателя А02-42-4СХ и теплового реле ТРН-10 с учетом затрат на демонтаж старого оборудования и монтаж нового составляет 131 руб., а для варианта с защитой УВТЗ - 170 руб. В соответствии с существующими нормативами принимаем кэ=0,32. После подстановки этих данных в уравнение (43) получим
Полученные величины характеризуют допустимые вероятности откэзое, выше которых применение тепловых реле экономически невыгодно. Аналогичные цифры получают для других двигателей небольшой мощности. Чтобы определить целесообразность применения рассматриваемых средств защиты, нужно сопоставить допустимые вероятности отказов с фактическими.
Отсутствие достаточных данных о фактических значениях не позволяют точно определить область эффективного применения рассмотренных защитных устройств путем прямого использования изложенного метода технико-экономического расчета. Однако, пользуясь результатами анализа режимов работы асинхронного двигателя и защитных устройств, а также некоторыми данными, косвенно характеризующими показатели требуемой надежности, можно наметить области предпочтительного использования того или иного вида защитного устройства.
Фактический уровень надежности действия защиты зависит не только от принципа ее действия и качества изготовления аппаратуры, но также и от уровня эксплуатации электрооборудования. Там, где налажено техническое обслуживание электрооборудования, несмотря на некоторые недостатки тепловых реле, уровень аварийности электродвигателей невысокий. Практика передовых хозяйств показывает, что при хорошо налаженном техническом обслуживании электроустановок ежегодный процент выхода из строя электродвигателей, защищенных тепловыми реле, можно снизить до 5% и ниже.
Однако следует заметить, что такой вывод справедлив только при рассмотрении общей картины. При рассмотрении некоторых конкретных условий предпочтение должно быть отдано другим устройствам защиты. Исходя из анализа режимов работы электропривода, можно указать ряд установок, для которых вероятность отказов тепловых реле будет высокой по причине недостатков принципа их действия.
1. Электроприводы машин, имеющих резкопеременную нагрузку (измельчители кормов, дробилки, пневмотранспортеры для загрузки силосной массы и т. п.). При больших колебаниях нагрузки тепловые реле не могут «моделировать» тепловое состояние двигателя, поэтому уровень фактических отказов тепловых реле в таких установках будет высоким.
2. Электродвигатели, работающие по схеме «треугольник». Их особенность заключается в том, что при обрыве одной из фаз питающей линии ток в оставшихся линейных проводах и фазах возрастает неодинаково. В наиболее нагруженной фазе ток растет быстрее, чем в линейных проводах.
3. Электродвигатели установок, работающих при повышенной частоте аварийных ситуаций, приводящих к остановке двигателя (например, транспортеры для уборки навоза).
4. Электродвигатели установок, простои которых наносят большой технологический ущерб.

Похожие публикации