Чему равно изменение модуля импульса. Что такое импульс тела

Импульсом (количеством движения) тела называют физическую векторную величину, являющуюся количественной характеристикой поступательного движения тел. Импульс обозначается р . Импульс тела равен произведению массы тела на его скорость, т.е. он рассчитывается по формуле:

Направление вектора импульса совпадает с направлением вектора скорости тела (направлен по касательной к траектории). Единица измерения импульса – кг∙м/с.

Общий импульс системы тел равен векторной сумме импульсов всех тел системы:

Изменение импульса одного тела находится по формуле (обратите внимание, что разность конечного и начального импульсов векторная):

где: p н – импульс тела в начальный момент времени, p к – в конечный. Главное не путать два последних понятия.

Абсолютно упругий удар – абстрактная модель соударения, при которой не учитываются потери энергии на трение, деформацию, и т.п. Никакие другие взаимодействия, кроме непосредственного контакта, не учитываются. При абсолютно упругом ударе о закрепленную поверхность скорость объекта после удара по модулю равна скорости объекта до удара, то есть величина импульса не меняется. Может поменяться только его направление. При этом угол падения равен углу отражения.

Абсолютно неупругий удар – удар, в результате которого тела соединяются и продолжают дальнейшее своё движение как единое тело. Например, пластилиновый шарик при падении на любую поверхность полностью прекращает свое движение, при столкновении двух вагонов срабатывает автосцепка и они так же продолжают двигаться дальше вместе.

Закон сохранения импульса

При взаимодействии тел импульс одного тела может частично или полностью передаваться другому телу. Если на систему тел не действуют внешние силы со стороны других тел, такая система называется замкнутой .

В замкнутой системе векторная сумма импульсов всех тел, входящих в систему, остается постоянной при любых взаимодействиях тел этой системы между собой. Этот фундаментальный закон природы называется законом сохранения импульса (ЗСИ) . Следствием его являются законы Ньютона. Второй закон Ньютона в импульсной форме может быть записан следующим образом:

Как следует из данной формулы, в случае если на систему тел не действует внешних сил, либо действие внешних сил скомпенсировано (равнодействующая сила равна нолю), то изменение импульса равно нолю, что означает, что общий импульс системы сохраняется:

Аналогично можно рассуждать для равенства нулю проекции силы на выбранную ось. Если внешние силы не действуют только вдоль одной из осей, то сохраняется проекция импульса на данную ось, например:

Аналогичные записи можно составить и для остальных координатных осей. Так или иначе, нужно понимать, что при этом сами импульсы могут меняться, но именно их сумма остается постоянной. Закон сохранения импульса во многих случаях позволяет находить скорости взаимодействующих тел даже тогда, когда значения действующих сил неизвестны.

Сохранение проекции импульса

Возможны ситуации, когда закон сохранения импульса выполняется только частично, то есть только при проектировании на одну ось. Если на тело действует сила, то его импульс не сохраняется. Но всегда можно выбрать ось так, чтобы проекция силы на эту ось равнялась нулю. Тогда проекция импульса на эту ось будет сохраняться. Как правило, эта ось выбирается вдоль поверхности по которой движется тело.

Многомерный случай ЗСИ. Векторный метод

В случаях если тела движутся не вдоль одной прямой, то в общем случае, для того чтобы применить закон сохранения импульса, нужно расписать его по всем координатным осям, участвующим в задаче. Но решение подобной задачи можно сильно упростить, если использовать векторный метод. Он применяется если одно из тел покоится до или после удара. Тогда закон сохранения импульса записывается одним из следующих способов:

Из правил сложения векторов следует, что три вектора в этих формулах должны образовывать треугольник. Для треугольников применяется теорема косинусов.

  • Назад
  • Вперёд

Как успешно подготовиться к ЦТ по физике и математике?

Для того чтобы успешно подготовиться к ЦТ по физике и математике, среди прочего, необходимо выполнить три важнейших условия:

  1. Изучить все темы и выполнить все тесты и задания приведенные в учебных материалах на этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.
  2. Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  3. Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.

Успешное, старательное и ответственное выполнение этих трех пунктов позволит Вам показать на ЦТ отличный результат, максимальный из того на что Вы способны.

Нашли ошибку?

Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на почту. Написать об ошибке можно также в социальной сети (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

Изменяются, так как на каждое из тел действуют силы взаимодействия, однако сумма импульсов остается постоянной. Это и называется законом сохранения импульса .

Второй закон Ньютона выражается формулой . Ее можно записать иным способом, если вспомнить, что ускорение равно быстроте изменения скорости тела. Для равноускоренного движения формула будет иметь вид:

Если подставить это выражение в формулу, получим:

,

Эту формулу можно переписать в виде:

В правой части этого равенства записано изменение произведения массы тела на его скорость. Произведение массы тела на скорость является физической величиной, которая называется импульсом тела или количеством движения тела .

Импульсом тела называют произведение массы тела на его скорость. Это векторная величина. Направление вектора импульса совпадает с направлением вектора скорости.

Другими словами, тело массой m , движущееся со скоростью обладает импульсом . За единицу импульса в СИ принят импульс тела массой 1 кг , движущегося со скоростью 1 м/с (кг·м/с). При взаимодействии друг с другом двух тел если первое действует на второе тело силой , то, согласному третьему закону Ньютона , второе действует на первое силой . Обозначим массы этих двух тел через m 1 и m 2 , а их скорости относительно какой-либо системы отсчета через и . Через некоторое время t в результате взаимодействия тел их скорости изменятся и станут равными и . Подставив эти значения в формулу, получим:

,

,

Следовательно,

Изменим знаки обеих частей равенства на противоположные и запишем в виде

В левой части равенства - сумма начальных импульсов двух тел, в правой части - сумма импульсов тех же тел через время t . Суммы равны между собой. Таким образом, несмотря на то. что импульс каждого тела при взаимодействии изменяется, полный импульс (сумма импульсов обоих тел) остается неизменным.

Действителен и тогда, когда взаимодействуют несколько тел. Однако, важно, чтобы эти тела взаимодействовали только друг с другом и на них не действовали силы со стороны других тел, не входящих в систему (либо чтоб внешние силы уравновешивались). Группа тел, не взаимодействущая с другими телами, называется замкнутой системой справедлив только для замкнутых систем.

В повседневной жизни для того, чтобы охарактеризовать человека, совершающего спонтанные поступки, иногда используют эпитет «импульсивный». При этом некоторые люди даже не помнят, а значительная часть и вовсе не знает, с какой физической величиной связано это слово. Что скрывается под понятием «импульс тела» и какими свойствами он обладает? Ответы на эти вопросы искали такие великие ученые, как Рене Декарт и Исаак Ньютон.

Как и всякая наука, физика оперирует четко сформулированными понятиями. На данный момент принято следующее определение для величины, носящей название импульса тела: это векторная величина, которая является мерой (количеством) механического движения тела.

Предположим, что вопрос рассматривается в рамках классической механики, т. е. считается, что тело движется с обычной, а не с релятивистской скоростью, а значит, она хотя бы на порядок меньше скорости света в вакууме. Тогда модуль импульса тела рассчитывается по формуле 1 (см. фото ниже).

Таким образом, по определению, эта величина равна произведению массы тела на его скорость, с которой сонаправлен ее вектор.

В качестве единицы измерения импульса в СИ (Международной системе единиц) принимается 1 кг/м/с.

Откуда появился термин «импульс»

За несколько веков до того, как в физике появилось понятие количества механического движения тела, считалось, что причиной любого перемещения в пространстве является особая сила — импетус.

В 14 веке в это понятие внес коррективы Жан Буридан. Он предположил, что летящий булыжник обладает импетусом, прямо пропорциональным скорости, который был бы неизменным, если бы отсутствовало сопротивления воздуха. В то же время, по мнению этого философа, тела с большим весом обладали способностью «вмещать» больше такой движущей силы.

Дальнейшее развитие понятию, позднее названного импульсом, дал Рене Декарт, который обозначил его словами «количество движения». Однако он не учитывал, что скорость имеет направление. Именно поэтому выдвинутая им теория в некоторых случаях противоречила опыту и не нашла признания.

О том, что количество движения должно иметь еще и направление, первым догадался английский ученый Джон Валлис. Произошло это в 1668 году. Однако понадобилась еще пара лет, чтобы он сформулировал известный закон сохранения количества движения. Теоретическое доказательство этого факта, установленного эмпирическим путем, было дано Исааком Ньютоном, который использовал открытые им же третий и второй законы классической механики, названные его именем.

Импульс системы материальных точек

Рассмотрим сначала случай, когда речь идет о скоростях, намного меньших, чем скорость света. Тогда, согласно законам классической механики, полный импульс системы материальных точек представляет векторную величину. Он равен сумме произведений их масс на скорости (см. формулу 2 на картинке выше).

При этом за импульс одной материальной точки принимают векторную величину (формула 3), которая сонаправлена со скоростью частицы.

Если речь идет о теле конечного размера, то сначала его мысленно разбивают на малые части. Таким образом, снова рассматривается система материальных точек, однако ее импульс рассчитывают не обычным суммированием, а путем интегрирования (см. формулу 4).

Как видим, временная зависимость отсутствует, поэтому импульс системы, на которую не воздействуют внешние силы (или их влияние взаимно компенсировано), остается неизменным во времени.

Доказательство закона сохранения

Продолжим рассматривать тело конечного размера как систему материальных точек. Для каждой из них Второй закон Ньютона формулируется согласно формуле 5.

Обратим внимание на то, что система замкнутая. Тогда, суммируя по всем точкам и применяя Третий закон Ньютона, получаем выражение 6.

Таким образом, импульс замкнутой системы является постоянной величиной.

Закон сохранения справедлив и в тех случаях, когда полная сумма сил, которые действуют на на систему извне, равна нулю. Отсюда следует одно важное частное утверждение. Оно гласит, что импульс тела является постоянной величиной, если воздействие извне отсутствует или влияние нескольких сил скомпенсировано. Например, в отсутствие трения после удара клюшкой шайба должна сохранять свой импульс. Такая ситуация будет наблюдаться даже невзирая на то, что на это тело действуют сила тяжести и реакции опоры (льда), так как они, хотя и равны по модулю, однако направлены в противоположные стороны, т. е. компенсируют друг друга.

Свойства

Импульс тела или материальной точки является аддитивной величиной. Что это значит? Все просто: импульс механической системы материальных точек складывается из импульсов всех входящих в систему материальных точек.

Второе свойство этой величины заключается в том, что она остается неизменной при взаимодействиях, которые изменяют лишь механические характеристики системы.

Кроме того, импульс инвариантен по отношению к любому повороту системы отсчета.

Релятивистский случай

Предположим, что речь идет о невзаимодействующих материальных точках, имеющих скорости порядка 10 в 8-й степени или чуть меньше в системе СИ. Трехмерный импульс рассчитывается по формуле 7, где под с понимают скорость света вакууме.

В случае, когда она замкнутая, верен закон сохранения количества движения. В то же время трехмерный импульс не является релятивистски инвариантной величиной, так как присутствует его зависимость от системы отсчета. Есть также четырехмерный вариант. Для одной материальной точки его определяют по формуле 8.

Импульс и энергия

Эти величины, а также масса тесно связаны друг с другом. В практических задачах обычно применяются соотношения (9) и (10).

Определение через волны де Бройля

В 1924 году была высказана гипотеза о том, что корпускулярно-волновым дуализмом обладают не только фотоны, но и любые другие частицы (протоны, электроны, атомы). Ее автором стал французский ученый Луи де Бройль. Если перевести эту гипотезу на язык математики, то можно утверждать, что с любой частицей, имеющей энергию и импульс, связана волна с частотой и длиной, выражаемыми формулами 11 и 12 соответственно (h — постоянная Планка).

Из последнего соотношения получаем, что модуль импульса и длина волны, обозначаемая буквой «лямбда», обратно пропорциональны друг другу (13).

Если рассматривается частица со сравнительно невысокой энергией, которая движется со скоростью, несоизмеримой со скоростью света, то модуль импульса вычисляется так же, как в классической механике (см. формулу 1). Следовательно, длина волны рассчитывается согласно выражению 14. Иными словами, она обратно пропорциональна произведению массы и скорости частицы, т. е. ее импульсу.

Теперь вы знаете, что импульс тела — это мера механического движения, и познакомились с его свойствами. Среди них в практическом плане особенно важен Закон сохранения. Даже люди, далекие от физики, наблюдают его в повседневной жизни. Например, всем известно, что огнестрельное оружие и артиллерийские орудия дают отдачу при стрельбе. Закон сохранения импульса наглядно демонстрирует и игра в бильярд. С его помощью можно предсказать направления разлета шаров после удара.

Закон нашел применение при расчетах, необходимых для изучения последствий возможных взрывов, в области создания реактивных аппаратов, при проектировании огнестрельного оружия и во многих других сферах жизни.

Импульсом (количеством движения) тела называют физическую векторную величину, являющуюся количественной характеристикой поступательного движения тел. Импульс обозначается р . Импульс тела равен произведению массы тела на его скорость, т.е. он рассчитывается по формуле:

Направление вектора импульса совпадает с направлением вектора скорости тела (направлен по касательной к траектории). Единица измерения импульса – кг∙м/с.

Общий импульс системы тел равен векторной сумме импульсов всех тел системы:

Изменение импульса одного тела находится по формуле (обратите внимание, что разность конечного и начального импульсов векторная):

где: p н – импульс тела в начальный момент времени, p к – в конечный. Главное не путать два последних понятия.

Абсолютно упругий удар – абстрактная модель соударения, при которой не учитываются потери энергии на трение, деформацию, и т.п. Никакие другие взаимодействия, кроме непосредственного контакта, не учитываются. При абсолютно упругом ударе о закрепленную поверхность скорость объекта после удара по модулю равна скорости объекта до удара, то есть величина импульса не меняется. Может поменяться только его направление. При этом угол падения равен углу отражения.

Абсолютно неупругий удар – удар, в результате которого тела соединяются и продолжают дальнейшее своё движение как единое тело. Например, пластилиновый шарик при падении на любую поверхность полностью прекращает свое движение, при столкновении двух вагонов срабатывает автосцепка и они так же продолжают двигаться дальше вместе.

Закон сохранения импульса

При взаимодействии тел импульс одного тела может частично или полностью передаваться другому телу. Если на систему тел не действуют внешние силы со стороны других тел, такая система называется замкнутой .

В замкнутой системе векторная сумма импульсов всех тел, входящих в систему, остается постоянной при любых взаимодействиях тел этой системы между собой. Этот фундаментальный закон природы называется законом сохранения импульса (ЗСИ) . Следствием его являются законы Ньютона. Второй закон Ньютона в импульсной форме может быть записан следующим образом:

Как следует из данной формулы, в случае если на систему тел не действует внешних сил, либо действие внешних сил скомпенсировано (равнодействующая сила равна нолю), то изменение импульса равно нолю, что означает, что общий импульс системы сохраняется:

Аналогично можно рассуждать для равенства нулю проекции силы на выбранную ось. Если внешние силы не действуют только вдоль одной из осей, то сохраняется проекция импульса на данную ось, например:

Аналогичные записи можно составить и для остальных координатных осей. Так или иначе, нужно понимать, что при этом сами импульсы могут меняться, но именно их сумма остается постоянной. Закон сохранения импульса во многих случаях позволяет находить скорости взаимодействующих тел даже тогда, когда значения действующих сил неизвестны.

Сохранение проекции импульса

Возможны ситуации, когда закон сохранения импульса выполняется только частично, то есть только при проектировании на одну ось. Если на тело действует сила, то его импульс не сохраняется. Но всегда можно выбрать ось так, чтобы проекция силы на эту ось равнялась нулю. Тогда проекция импульса на эту ось будет сохраняться. Как правило, эта ось выбирается вдоль поверхности по которой движется тело.

Многомерный случай ЗСИ. Векторный метод

В случаях если тела движутся не вдоль одной прямой, то в общем случае, для того чтобы применить закон сохранения импульса, нужно расписать его по всем координатным осям, участвующим в задаче. Но решение подобной задачи можно сильно упростить, если использовать векторный метод. Он применяется если одно из тел покоится до или после удара. Тогда закон сохранения импульса записывается одним из следующих способов:

Из правил сложения векторов следует, что три вектора в этих формулах должны образовывать треугольник. Для треугольников применяется теорема косинусов.

В некоторых случаях удается исследовать взаимодействие тел, не используя выражения для сил, действующих между телами. Это возможно благодаря тому, что существуют физические величины, которые остаются неизменными (сохраняются) при взаимодействии тел. В этой главе мы рассмотрим две такие величины – импульс и механическую энергию.
Начнем с импульса.

Физическую величину , равную произведению массы тела m на его скорость , называют импульсом тела (или просто импульсом):

Импульс – векторная величина. Модуль импульса p = mv, а направление импульса совпадает с направлением скорости тела. Единицей импульса является 1 (кг * м)/с.

1. По шоссе в направлении на север со скоростью 40 км/ч едет грузовик массой 3 т. В каком направлении и с какой скоростью должен ехать легковой автомобиль массой 1 т, чтобы его импульс был равен импульсу грузовика?

2. Мяч массой 400 г свободно падает без начальной скорости с высоты 5 м, После удара мяч отскакивает вверх, причем модуль скорости мяча в результате удара не изменяется.
а) Чему равен и как направлен импульс мяча непосредственно перед ударом?
б) Чему равен и как направлен импульс мяча сразу после удара?
в) Чему равно и как направлено изменение импульса мяча в результате удара? Найдите изменение импульса графически.
Подсказка. Если импульс тела был равен 1 , а стал равен 2 , то изменение импульса ∆ = 2 – 1 .

2. Закон сохранения импульса

Важнейшим свойством импульса является то, что при определенных условиях суммарный импульс взаимодействующих тел остается неизменным (сохраняется).

Поставим опыт

Две одинаковые тележки могут катиться по столу вдоль одной прямой практически без трения. (Этот опыт можно поставить при наличии современного оборудования.) Отсутствие трения – важное условие нашего опыта!

Установим на тележках защелки, благодаря которым тележки после столкновения движутся как одно тело. Пусть правая тележка вначале покоится, а левой толчком сообщим скорость 0 (рис. 25.1, а).

После столкновения тележки движутся вместе. Измерения показывают, что их общая скорость в 2 раза меньше, чем начальная скорость левой тележки (25.1, б).

Обозначим массу каждой тележки m и сравним суммарные импульсы тележек до и после столкновения.

Мы видим, что суммарный импульс тележек остался неизменным (сохранился).

Может быть, это справедливо только тогда, когда тела после взаимодействия движутся как единое целое?

Поставим опыт
Заменим защелки на упругую пружину и повторим опыт (рис. 25.2).

На этот раз левая тележка остановилась, а правая приобрела скорость, равную начальной скорости левой тележки.

3. Докажите, что и в этом случае суммарный импульс тележек сохранился.

Может быть, это справедливо только тогда, когда массы взаимодействующих тел равны?

Поставим опыт
Закрепим на правой тележке еще одну такую же тележку и повторим опыт (рис. 25.3).

Теперь после столкновения левая тележка стала двигаться в противоположном направлении (то есть влево) со скоростью, равной –/3, а сдвоенная тележка стала двигаться вправо со скоростью 2/3.

4. Докажите, что и в этом опыте суммарный импульс тележек сохранился.

Чтобы определить, при каких условиях суммарный импульс тел сохраняется, введем представление о замкнутой системе тел. Так называют систему тел, которые взаимодействуют только друг с другом (то есть не взаимодействуют с телами, не входящими в эту систему).

В точности замкнутых систем тел в природе не существует – хотя бы потому, что невозможно «отключить» силы всемирного тяготения.

Но во многих случаях систему тел с хорошей точностью можно считать замкнутой. Например, когда внешние силы (силы, действующие на тела системы со стороны других тел) уравновешивают друг друга или ими можно пренебречь.

Именно так и было в наших опытах с тележками: действующие на них внешние силы (сила тяжести и сила нормальной реакции) уравновешивали друг друга, а силой трения можно было пренебречь, Поэтому скорости тележек изменялись только вследствие их взаимодействия друг с другом.

Описанные опыты, как и многие другие, подобные им, свидетельствуют о том, что выполняется
закон сохранения импульса: векторная сумма импульсов тел, составляющих замкнутую систему, не изменяется при любых взаимодействиях между телами системы :
Закон сохранения импульса выполняется только в инерциальных системах отсчета.

Закон сохранения импульса как следствие законов Ньютона

Покажем на примере замкнутой системы двух взаимодействующих тел, что закон сохранения импульса – следствие второго и третьего законов Ньютона.

Обозначим массы тел m 1 и m 2 , а их начальные скорости 1 и 2 . Тогда векторная сумма импульсов тел

Пусть в течение промежутка времени ∆t взаимодействующие тела двигались с ускорениями 1 и 2 .

5. Объясните, почему изменение суммарного импульса тел можно записать в виде

Подсказка. Воспользуйтесь тем, что для каждого тела ∆ = m∆, а также тем, что ∆ = ∆t.

6. Обозначим 1 и 2 силы, действующие соответственно на первое и второе тело. Докажите, что

Подсказка. Воспользуйтесь вторым законом Ньютона и тем, что система замкнута, вследствие чего ускорения тел обусловлены только силами, с которыми эти тела действуют друг на друга.

7. Докажите, что

Подсказка. Воспользуйтесь третьим законом Ньютона.

Итак, изменение суммарного импульса взаимодействующих тел равно нулю. А если изменение некоторой величины равно нулю, то это означает, что эта величина сохраняется.

8. Почему из приведенного рассуждения следует, что закон сохранения импульса выполняется только в инерциальных системах отсчета?

3. Импульс силы

Есть такая поговорка: «Знать бы, где упадешь, – соломки постелил бы». А зачем нужна «соломка»? Почему спортсмены на тренировках и соревнованиях падают или прыгают на мягкие маты, а не на твердый пол? Почему после прыжка надо приземляться на согнутые ноги, а не на выпрямленные? Зачем в автомобилях нужны ремни и подушки безопасности?
Мы сможем ответить на все эти вопросы, познакомившись с понятием «импульс силы».

Импульсом силы называют произведение силы на промежуток времени ∆t, в течение которого действует эта сила.

Название «импульс силы» не случайно «перекликается» с понятием «импульс». Рассмотрим случай, когда на тело массой m в течение промежутка времени ∆t действует сила .

9. Докажите, что изменение импульса тела ∆ равно импульсу действующей на это тело силы:

Подсказка. Воспользуйтесь тем, что ∆ = m∆, и вторым законом Ньютона.

Перепишем формулу (6) в виде

Эта формула представляет собой другую форму записи второго закона Ньютона. (Именно в таком виде сформулировал этот закон сам Ньютон.) Из нее следует, что на тело действует большая сила, если его импульс существенно изменяется за очень краткий промежуток времени ∆t.

Вот почему при ударах и столкновениях возникают большие силы: удары и столкновения характеризуются как раз малым интервалом времени взаимодействия.

Чтобы ослабить силу удара или уменьшить силы, возникающие при столкновении тел, надо удлинить промежуток времени, в течение которого происходит удар или столкновение.

10. Объясните смысл поговорки, приведенной в начале этого раздела, а также ответьте на другие вопросы, помещенные в том же абзаце.

11. Мяч массой 400 г ударился о стену и отскочил от нее с той же по модулю скоростью, равной 5 м/с. Перед самым ударом скорость мяча была направлена горизонтально. Чему равна средняя сила давления мяча на стену, если он соприкасался со стеной в течение 0,02 с?

12.Чугунная болванка массой 200 кг падает с высоты 1,25 м в песок и погружается в него на 5 см.
а) Чему равен импульс болванки непосредственно перед ударом?
б) Чему равно изменение импульса болванки за время удара?
в) Сколько времени длился удар?
г) Чему равна средняя сила удара?


Дополнительные вопросы и задания

13. Шарик массой 200 г движется со скоростью 2 м/с влево. Как должен двигаться другой шарик массой 100 г, чтобы суммарный импульс шариков был равен нулю?

14. Шарик массой 300 г равномерно движется по окружности радиусом 50 см со скоростью 2 м/с. Чему равен модуль изменения импульса шарика:
а) за один полный период обращения?
б) за половину периода обращения?
в) за 0,39 с?

15. Первая доска лежит на асфальте, а вторая такая же – на рыхлом песке. Объясните, почему в первую доску легче забить гвоздь, чем во вторую?

16. Пуля массой 10 г, летевшая со скоростью 700 м/с, пробила доску, после чего скорость пули стала равной 300 м/с. Внутри доски пуля двигалась в течение 40 мкс.
а) Чему равно изменение импульса пули вследствие прохождения сквозь доску?
б) С какой средней силой пуля действовала на доску при прохождении сквозь нее?



Похожие публикации