Как измерить площадь параллелограмма. Вычисляем сумму углов и площадь параллелограмма: свойства и признаки

Как в евклидовой геометрии точка и прямая - главные элементы теории плоскостей, так и параллелограмм является одной из ключевых фигур выпуклых четырехугольников. Из него, как нитки из клубка, втекают понятия «прямоугольника», «квадрата», «ромба» и других геометрических величин.

Вконтакте

Определение параллелограмма

Выпуклый четырехугольник, состоящий из отрезков, каждая пара из которых параллельна, известен в геометрии как параллелограмм.

Как выглядит классический параллелограмм изображает четырехугольник ABCD. Стороны называются основаниями (AB, BC, CD и AD), перпендикуляр, проведенный из любой вершины на противоположную этой вершине сторону, - высотой (BE и BF), линии AC и BD - диагоналями.

Внимание! Квадрат, ромб и прямоугольник - это частные случаи параллелограмма.

Стороны и углы: особенности соотношения

Ключевые свойства, по большому счету, предопределены самим обозначением , их доказывает теорема. Эти характеристики следующие:

  1. Стороны, которые являются противоположными, - попарно одинаковые.
  2. Углы, расположенные противоположно друг другу - попарно равны.

Доказательство: рассмотрим ∆ABC и ∆ADC, которые получаются вследствие разделения четырехугольника ABCD прямой AC. ∠BCA=∠CAD и ∠BAC=∠ACD, поскольку AC для них общая (вертикальные углы для BC||AD и AB||CD, соответственно). Из этого следует: ∆ABC = ∆ADC (второй признак равенства треугольников).

Отрезки AB и BC в ∆ABC попарно соответствуют линиям CD и AD в ∆ADC, что означает их тождество: AB = CD, BC = AD. Таким образом, ∠B соответствует ∠D и они равны. Так как ∠A=∠BAC+∠CAD, ∠C=∠BCA+∠ACD, которые так же попарно одинаковые, то ∠A = ∠C. Свойство доказано.

Характеристики диагоналей фигуры

Основной признак этих линий параллелограмма: точка пересечения разделяет их пополам.

Доказательство: пусть т. Е - это точка пересечения диагоналей AC и BD фигуры ABCD. Они образуют два соизмеримых треугольника - ∆ABE и ∆CDE.

AB=CD, так как они противоположные. Согласно прямых и секущей, ∠ABE = ∠CDE и ∠BAE = ∠DCE.

По второму признаку равенства ∆ABE = ∆CDE. Это означает, что элементы ∆ABE и ∆CDE: AE = CE, BE = DE и при этом они соразмерные части AC и BD. Свойство доказано.

Особенности смежных углов

У смежных сторон сумма углов равна 180° , поскольку они лежат по одну сторону параллельных линий и секущей. Для четырехугольника ABCD:

∠A+∠B=∠C+∠D=∠A+∠D=∠B+∠C=180º

Свойства биссектрисы:

  1. , опущенные на одну сторону, являются перпендикулярными;
  2. противолежащие вершины имеют параллельные биссектрисы;
  3. треугольник, полученный проведением биссектрисы, будет равнобедренным.

Определение характерных черт параллелограмма по теореме

Признаки этой фигуры вытекают из ее основной теоремы, которая гласит следующее: четырехугольник считается параллелограммом в том случае, если его диагонали пересекаются, а эта точка разделяет их на равные отрезки.

Доказательство: пусть в т. Е прямые AC и BD четырехугольника ABCD пересекаются. Так как ∠AED = ∠BEC, а AE+CE=AC BE+DE=BD, то ∆AED = ∆BEC (по первому признаку равенства треугольников). То есть ∠EAD = ∠ECB. Они также являются внутренними перекрестными углами секущей AC для прямых AD и BC. Таким образом, по определению параллельности - AD || BC. Аналогичное свойство линий BC и CD выводится также. Теорема доказана.

Вычисление площади фигуры

Площадь этой фигуры находится несколькими методами, одним из самых простых: умножения высоты и основания, к которому она проведена.

Доказательство: проведем перпендикуляры BE и CF из вершин B и C. ∆ABE и ∆DCF - равные, поскольку AB = CD и BE = CF. ABCD - равновеликий с прямоугольником EBCF, так как они состоят и соразмерных фигур: S ABE и S EBCD , а также S DCF и S EBCD . Из этого следует, что площадь этой геометрической фигуры находится так же как и прямоугольника:

S ABCD = S EBCF = BE×BC=BE×AD.

Для определения общей формулы площади параллелограмма обозначим высоту как hb , а сторону - b . Соответственно:

Другие способы нахождения площади

Вычисления площади через стороны параллелограмма и угол , который они образуют, - второй известный метод.

,

Sпр-ма - площадь;

a и b - его стороны

α - угол между отрезками a и b.

Этот способ практически основывается на первом, но в случае, если неизвестна. всегда отрезает прямоугольный треугольник, параметры которого находятся тригонометрическими тождествами, то есть . Преобразуя соотношение, получаем . В уравнении первого способа заменяем высоту этим произведением и получаем доказательство справедливости этой формулы.

Через диагонали параллелограмма и угол, который они создают при пересечении, также можно найти площадь.

Доказательство: AC и BD пересекаясь, образуют четыре треугольника: ABE, BEC, CDE и AED. Их сумма равна площади этого четырехугольника.

Площадь каждого из этих ∆ можно найти за выражением , где a=BE, b=AE, ∠γ =∠AEB. Поскольку , то в расчетах используется единое значение синуса. То есть . Поскольку AE+CE=AC= d 1 и BE+DE=BD= d 2 , формула площади сводится до:

.

Применение в векторной алгебре

Особенности составляющих частей этого четырехугольника нашли применение в векторной алгебре, а именно: сложении двух векторов. Правило параллелограмма утверждает, что если заданные векторы и не коллинеарны, то их сумма будет равна диагонали этой фигуры, основания которой соответствуют этим векторам.

Доказательство: из произвольно выбранного начала - т. о. - строим векторы и . Далее строим параллелограмм ОАСВ, где отрезки OA и OB - стороны. Таким образом, ОС лежит на векторе или сумме .

Формулы для вычисления параметров параллелограмма

Тождества приведены при следующих условиях:

  1. a и b, α - стороны и угол между ними;
  2. d 1 и d 2 , γ - диагонали и в точке их пересечения;
  3. h a и h b - высоты, опущенные на стороны a и b;
Параметр Формула
Нахождение сторон
по диагоналям и косинусу угла между ними

по диагоналям и стороне

через высоту и противоположную вершину
Нахождение длины диагоналей
по сторонам и величине вершины между ними
по сторонам и одной из диагоналей



Вывод

Параллелограмм как одна из ключевых фигур геометрии находит применение в жизни, например, в строительстве при подсчете площади участка или других измерений. Поэтому знания об отличительных признаках и способах вычисления различных его параметров могут пригодится в любой момент жизни.

Формула для площади параллелограмма

Площадь параллелограмма равна произведению его стороны на высоту, опущенную на эту сторону.

Доказательство

Если параллелограмм - прямоугольник, то равенство выполнено по теореме о площади прямоугольника. Далее считаем, что углы параллелограмма не прямые.

Пусть в параллелограмме $ABCD$ угол $\angle BAD$ острый и $AD > AB$. Иначе переименуем вершины. Тогда высота $BH$ из вершины $B$ на прямую $AD$ падает на сторону $AD$, так как катет $AH$ короче гипотенузы $AB$, а $AB < AD$. Основание $K$ высоты $CK$ из точки $C$ на прямую $AB$ лежит на продолжении отрезка $AD$ за точку $D$, так как угол $\angle BAD$ острый, а значит $\angle CDA$ тупой. Вследствие параллельности прямых $BA$ и $CD$ $\angle BAH = \angle CDK$. В параллелограмме противоположные стороны равны, следовательно, по стороне и двум углам, треугольники $\triangle ABH = \triangle DCK$ равны.

Сравним площадь параллелограмма $ABCD$ и площадь прямоугольника $HBCK$. Площадь параллелограмма больше на площадь $\triangle ABH$, но меньше на на площадь $\triangle DCK$. Так как эти треугольники равны, то и их площади равны. Значит, площадь параллелограмма равна площади прямоугольника со сторонами длиной в сторону и высоту параллелограмма.

Формула для площади параллелограмма через стороны и синус

Площадь параллелограмма равна произведению соседних сторон на синус угла между ними.

Доказательство

Высота параллелограмма $ABCD$, опущенная на сторону $AB$ равна произведению отрезка $BC$ на синус угла $\angle ABC$. Осталось применить предыдущее утверждение.

Формула для площади параллелограмма через диагонали

Площадь параллелограмма равна половине произведения диагоналей на синус угла между ними.

Доказательство

Пусть диагонали параллелограмма $ABCD$ пересекаются в точке $O$ под углом $\alpha$. Тогда $AO=OC$ и $BO=OD$ по свойству параллелограмма. Синусы углов, в сумме дающих $180^\circ$ равны, $\angle AOB = \angle COD = 180^\circ - \angle BOC = 180^\circ - \angle AOD$. Значит, синусы углов при пересечении диагоналей равны $\sin \alpha$.

$S_{ABCD}=S_{\triangle AOB} + S_{\triangle BOC} + S_{\triangle COD} + S_{\triangle AOD}$

по аксиоме измерения площади. Применяем формулу площади треугольника $S_{ABC} = \dfrac{1}{2} \cdot AB \cdot BC \sin \angle ABC$ для этих треугольников и углов при пересечении диагоналей. Стороны каждого равны половинам диагоналей, синусы также равны. Следовательно, площади всех четырёх треугольников равны $S = \dfrac{1}{2} \cdot \dfrac{AC}{2} \cdot \dfrac{BD}{2} \cdot \sin \alpha = \dfrac{AC \cdot BD}{8} \sin \alpha$. Суммируя всё вышесказанное, получаем

$S_{ABCD} = 4S = 4 \cdot \dfrac{AC \cdot BD}{8} \sin \alpha = \dfrac{AC \cdot BD \cdot \sin \alpha}{2}$

Введите длину стороны и высоту к стороне :

Определение параллелограмма

Параллелограмм - это четырехугольник, в котором противоположные стороны равны и параллельны.

Онлайн-калькулятор

Параллелограмм обладает некоторыми полезными свойствами, которые упрощают решение задач, связанных с этой фигурой. Например, одно из свойств заключается в том, что противоположные углы параллелограмма равны.

Рассмотрим несколько способов и формул с последующим решением простых примеров.

Формула площади параллелограмма по основанию и высоте

Данный способ нахождения площади является, наверно, одним из основных и простых, так как он практически идентичен формуле по нахождению площади треугольника за небольшим исключением. Для начала разберем обобщенный случай без использования чисел.

Пусть дан произвольный параллелограмм с основанием a a a , боковой стороной b b b и высотой h h h , проведенной к нашему основанию. Тогда формула для площади этого параллелограмма:

S = a ⋅ h S=a\cdot h S = a ⋅ h

A a a - основание;
h h h - высота.

Разберем одну легкую задачу, чтобы потренироваться в решении типовых задач.

Пример

Найти площадь параллелограмма, в котором известно основание, равное 10 (см.) и высота, равная 5 (см.).

Решение

A = 10 a=10 a = 1 0
h = 5 h=5 h = 5

Подставляем в нашу формулу. Получаем:
S = 10 ⋅ 5 = 50 S=10\cdot 5=50 S = 1 0 ⋅ 5 = 5 0 (см. кв.)

Ответ: 50 (см. кв)

Формула площади параллелограмма по двум сторонам и углу между ними

В этом случае искомая величина находится так:

S = a ⋅ b ⋅ sin ⁡ (α) S=a\cdot b\cdot\sin(\alpha) S = a ⋅ b ⋅ sin (α )

A , b a, b a , b - стороны параллелограмма;
α \alpha α - угол между сторонами a a a и b b b .

Теперь решим другой пример и воспользуемся вышеописанной формулой.

Пример

Найти площадь параллелограмма если известна сторона a a a , являющаяся основанием и с длиной 20 (см.) и периметр p p p , численно равный 100 (см.), угол между смежными сторонами ( a a a и b b b ) равен 30 градусам.

Решение

A = 20 a=20 a = 2 0
p = 100 p=100 p = 1 0 0
α = 3 0 ∘ \alpha=30^{\circ} α = 3 0

Для нахождения ответа нам неизвестна лишь вторая сторона данного четырехугольника. Найдем ее. Периметр параллелограмма дается формулой:
p = a + a + b + b p=a+a+b+b p = a + a + b + b
100 = 20 + 20 + b + b 100=20+20+b+b 1 0 0 = 2 0 + 2 0 + b + b
100 = 40 + 2 b 100=40+2b 1 0 0 = 4 0 + 2 b
60 = 2 b 60=2b 6 0 = 2 b
b = 30 b=30 b = 3 0

Самое сложное позади, осталось только подставить наши значения для сторон и угла между ними:
S = 20 ⋅ 30 ⋅ sin ⁡ (3 0 ∘) = 300 S=20\cdot 30\cdot\sin(30^{\circ})=300 S = 2 0 ⋅ 3 0 ⋅ sin (3 0 ) = 3 0 0 (см. кв.)

Ответ: 300 (см. кв.)

Формула площади параллелограмма по диагоналям и углу между ними

S = 1 2 ⋅ D ⋅ d ⋅ sin ⁡ (α) S=\frac{1}{2}\cdot D\cdot d\cdot\sin(\alpha) S = 2 1 ​ ⋅ D ⋅ d ⋅ sin (α )

D D D - большая диагональ;
d d d - малая диагональ;
α \alpha α - острый угол между диагоналями.

Пример

Даны диагонали параллелограмма, равные 10 (см.) и 5 (см.). Угол между ними 30 градусов. Вычислить его площадь.

Решение

D = 10 D=10 D = 1 0
d = 5 d=5 d = 5
α = 3 0 ∘ \alpha=30^{\circ} α = 3 0

S = 1 2 ⋅ 10 ⋅ 5 ⋅ sin ⁡ (3 0 ∘) = 12.5 S=\frac{1}{2}\cdot 10 \cdot 5 \cdot\sin(30^{\circ})=12.5 S = 2 1 ​ ⋅ 1 0 ⋅ 5 ⋅ sin (3 0 ) = 1 2 . 5 (см. кв.)

Площадь параллелограмма

Теорема 1

Площадь параллелограмма определяется как произведение длины его стороны, на высоту, проведенную к ней.

где $a$ сторона параллелограмма, $h$ - высота, проведенная к этой стороне.

Доказательство.

Пусть нам дан параллелограмм $ABCD$, у которого $AD=BC=a$. Проведем высоты $DF$ и $AE$ (рис. 1).

Рисунок 1.

Очевидно, что фигура $FDAE$ -- прямоугольник.

\[\angle BAE={90}^0-\angle A,\ \] \[\angle CDF=\angle D-{90}^0={180}^0-\angle A-{90}^0={90}^0-\angle A=\angle BAE\]

Следовательно, так как $CD=AB,\ DF=AE=h$, по $I$ признаку равенства треугольников $\triangle BAE=\triangle CDF$. Тогда

Значит по теореме о площади прямоугольника :

Теорема доказана.

Теорема 2

Площадь параллелограмма определяется как произведение длины его смежных сторон, на синус угла между этими сторонами.

Математически это можно записать следующим образом

где $a,\ b$ стороны параллелограмма, $\alpha $ -- угол между ними.

Доказательство.

Пусть нам дан параллелограмм $ABCD$, у которого $BC=a,\ CD=b,\ \angle C=\alpha $. Проведем высоту $DF=h$ (рис. 2).

Рисунок 2.

По определению синуса, получим

Следовательно

Значит, по теореме $1$:

Теорема доказана.

Площадь треугольника

Теорема 3

Площадь треугольника определяется как половина произведения длины его стороны, на высоту, проведенную к ней.

Математически это можно записать следующим образом

где $a$ сторона треугольника, $h$ - высота, проведенная к этой стороне.

Доказательство.

Рисунок 3.

Значит по теореме $1$:

Теорема доказана.

Теорема 4

Площадь треугольника определяется как половина произведения длины его смежных сторон, на синус угла между этими сторонами.

Математически это можно записать следующим образом

где $a,\ b$ стороны треугольника, $\alpha $ -- угол между ними.

Доказательство.

Пусть нам дан треугольник $ABC$, у которого $AB=a$. Проведем высоту $CH=h$. Достроим его до параллелограмма $ABCD$ (рис. 3).

Очевидно, что по $I$ признаку равенства треугольников $\triangle ACB=\triangle CDB$. Тогда

Значит по теореме $1$:

Теорема доказана.

Площадь трапеции

Теорема 5

Площадь трапеции определяется как половина произведения суммы длин его оснований, на его высоту.

Математически это можно записать следующим образом

Доказательство.

Пусть нам дана трапеция $ABCK$, где $AK=a,\ BC=b$. Проведем в ней высоты $BM=h$ и $KP=h$, а также диагональ $BK$ (рис. 4).

Рисунок 4.

По теореме $3$, получим

Теорема доказана.

Пример задачи

Пример 1

Найти площадь равностороннего треугольника, если длина его стороны равняется $a.$

Решение.

Так как треугольник равносторонний, то все его углы равняются ${60}^0$.

Тогда, по теореме $4$, имеем

Ответ: $\frac{a^2\sqrt{3}}{4}$.

Заметим, что результат этой задачи можно применять при нахождении площади любого равностороннего треугольника с данной стороной.

Прежде чем узнать, как найти площадь параллелограмма, нам необходимо вспомнить, что такое параллелограмм и что называется его высотой. Параллелограмм – четырехугольник, противолежащие стороны которого попарно параллельны (лежат на параллельных прямых). Перпендикуляр, проведенный из произвольной точки противоположной стороны к прямой, содержащей эту сторону называется высотой параллелограмма.

Квадрат, прямоугольник и ромб – это частные случаи параллелограмма.

Площадь параллелограмма обозначается как (S).

Формулы нахождения площади параллелограмма

S=a*h , где а – это основание, h – это высота, которая проведена к основанию.

S=a*b*sinα , где a и b – это основания, а α - угол между основаниями а и b.

S =p*r , где р – это полупериметр, r – это радиус окружности, которая вписана в параллелограмм.

Площадь параллелограмма, который образован векторами a и b равна модулю произведения заданных векторов, а именно:

Рассмотрим пример №1: Дан параллелограмм, сторона которого равна 7 см, а высота 3 см. Как найти площадь параллелограмма, формула для решения нам необходима.

Таким образом, S= 7x3. S=21. Ответ: 21 см 2 .

Рассмотрим пример №2: Даны основания 6 и 7 см, а также дан угол между основаниями 60 градусов. Как найти площадь параллелограмма? Формула, используемая для решения:

Таким образом, сначала найдем синус угла. Синус 60 = 0,5, соответственно S = 6*7*0,5=21 Ответ: 21 см 2 .

Надеюсь, что эти примеры Вам помогут при решении задач. И помните, главное – это знание формул и внимательность



Похожие публикации