Пуско зарядное устройство своими руками для трактора. Пуско-зарядное устройство

Пуско зарядное устройство позволяет запустить двигатель автомобиля в зимний период. Так как для запуска двигателя внутреннего сгорания с подсевшим аккумулятором необходимо много сил и времени. Плотность электролита зимой ощутимо понижается, а протекающий внутри аккумулятора процесс сульфатации увеличивает его внутреннее сопротивление и уменьшает стартовый ток аккумулятора. К тому же, зимой увеличивается вязкость моторного масла, поэтому аккумулятору требуется больше стартовой мощности. Облегчить запуск двигателя зимой можно разогрев масло в картере авто, завести машину от другого аккумулятора, завести «с толкача» или применить пуско зарядное устройство для автомобиля.

Пуско зарядное устройство для автомобиля состоит из трансформатора и мощных выпрямительных диодов. Для нормальной работы пускового устройства требуется на выходе ток не менее 90 ампер, а напряжение 14 вольт, поэтому трансформатор должен быть достаточно мощным не менее 800 Вт.


Для изготовления трансформатора легче всего использовать сердечник от любого ЛАТРа. Первичная обмотка должна быть от 265 до 295 витков провода диаметром не менее 1,5мм, лучше 2,0мм. Намотку нужно осуществлять в три слоя. Между слоями хорошая изоляция.

После наматывания первичной обмотки проводим ее испытания подключая к сети и замеряют ток холостого хода. Он должен находится в пределах 210 - 390 мА. Если будет меньше, то отмотайте несколько витков, а если больше то наоборот.

Вторичная обмотка трансформатора состоит из двух обмоток и содержит по 15:18 витков многожильного провода сечением 6 мм. Намотка обмоток происходит одновременно. Напряжение на выходе обмоток должно быть около 13 вольт.

Провода соединяющие устройство с аккумулятором необходимо использовать многожильные, с сечением не менее 10 мм. Выключатель должен выдерживать ток не менее 6 Ампер.

Схема пуско зарядного устройства для автомобиля содержит симисторный регулятор напряжения, силовой трансформатор, выпрямитель на мощных диодах и стартерный аккумулятор. Ток подзарядки устанавливается регулятором тока на симисторе и регулируется переменным сопротивлением R2 и зависит от емкости аккумуляторной батареи. Входная и выходная цепи зарядки содержат фильтровочные конденсаторы, которые уменьшают степень радиопомех при работе симисторного регулятора. Симистор правильно работает при напряжения сети в от 180 до 230 В.

Выпрямительный мост синхронизирует включение симистора в обоих полупериодах сетевого напряжения. В режиме «Регенерация» используется только положительный полупериод сетевого напряжения, что очищает пластины аккумуляторной батареи от имеющейся кристаллизации.

Силовой трансформатор позаимствован от телевизора «Рубин». Можно также взять трансформатор ТСА-270. Первичные обмотки оставляем без изменений, а вот вторичные переделаем. Для этого каркасы отделим от сердечника, вторичные обмотки до фольги экранов разматывают, а на их место наматывают медным проводом сечением 2,0 мм в один слой до заполнения вторичные обмотки. В результате перемотки должно выйти примерно 15… 17 В

При регулировки к пуско зарядному устройству подключается внутренний аккумулятор, и испытывается регулировка зарядного тока сопротивлением R2. Затем проверяем зарядный ток в режиме заряда, пуска и регенерации. Если он не более 10…12 ампер, то устройство находится в рабочем состоянии. При подсоединении устройства к аккумуляторной батареи автомобиля, ток заряда в первоначальный момент возрастает примерно в 2-3 раза, а через 10 - 30 мин снижается. После этого переключатель SA3 переключают в режим «Пуск», и осуществляется старт двигателя автомобиля. В случае неудачной попытки, дополнительно подзаряжаем в течение 10 - 30 мин, и пытаемся опять.

Схема содержит: стабилизированный источник питания (диоды VD1-VD4, VD9, VD10, конденсаторы С1, СЗ, резистор R7 и транзистор VT2)

узел синхронизации (транзистор VT1, резисторы R1/R3/R6, конденсатор С4 и элементы D1.3 и D1.4, выполненные на микросхеме К561ТЛ1);

генератор импульсов (элементы D1.1, D1.2, резисторы R2, R4, R5 и конденсатор С2);

счетчик импульсов (микросхема D2К561ИЕ16);

усилитель мощности (транзистор VT3, резисторы R8 и R9);

силовой узел (оптронные тиристорные модули VS1 MTO-80, VS2, силовые диоды В-50 VD5-VD8, шунт R10, приборы - амперметр и вольтметр);

узел определения короткого замыкания (транзистор VT4, резисторы R11-R14).

Схема работает следующим образом. При подаче напряжения на выходе моста (диоды VD1-VD4) появляется однополупериодное напряжение (график 1 на рис.2), которое после прохождения цепи VT1-D1.3.-D1.4, преобразуется в импульсы положительной полярности (график 2 на рис.2). Эти импульсы для счетчика D2 являются сигналом сброса в нулевое состояние. После исчезновения импульса сброса импульсы генератора (D1.1, D1.2) суммируются в счетчике D2 и при достижении числа 64 на выходе счетчика (вывод 6) появляется импульс длительностью не менее 10 периодов импульса генератора (график 3 рис.2). Этот импульс открывает тиристор VS1 и на выходе ПЗУ (график 4 на рис.2) появляется напряжение. Для иллюстрации пределов регулирования напряжения на графике 5 рис.2 показан случай задания практически полного выходного напряжения.

При параметрах частотозадающей цепи (резисторы R2, R4, R5 и конденсатор С2 на рис.1) угол открывания тиристора VS1 лежит в пределах 17 (f=70 кГц)- 160(f=7 кГц) электрических градусов, что дает нижний предел выходного напряжения порядка 0,1 величины входного. Частоту выходных сигналов генератора определяет выражение

f=450/(R 4 +R 5)С 2

,

где размерность f - кГц; R - кОм; С - нФ.При необходимости ПЗУ можно использовать для регулирования только напряжения переменного тока. Для этого из схемы (рис.1) следует исключитьмост на диодах VD5-VD8, а тиристоры включить встречно-параллельно (на рис.1 это показано штриховой линией).

В этом случае с помощью схемы (рис.1) можно регулировать выходное напряжение от 20 до 200 В, но следует помнить, что выходное напряжение далеко не синусоидально, т.е. в качестве потребителя могут служить лишь электронагревательные приборы или лампы накаливания. В последнем случае мож- но резко увеличить срок служб ламп, так как их включение можно начинать плавно, изменяя напряжение с 20 до 200 В резистором R5. Наладка ПЗУ сводится к отстройке уровня срабатывания защиты от токов короткого замыкания. Для этого убираем перемычки между точками А и В (рис.1) и в т. В временно подаем напряжение +Uп. Изменением положения движка резистора R14 определяем уровень напряжения (т. С на рис.1), при котором открывается транзистор VT4. Уровень срабатывания защиты в амперах можно определить по формуле I>k /R10, где k=Uп/Uт.c., Uп - напряжение питания; Uт.с. - напряжение в точке С, при котором срабатывает VT4; R10 - сопротивление шунта.


В заключение можно рекомендовать порядок включения ПЗУ в работу и сообщить возможные замены комплектующих, допуски и особенности изготовления: микросхему D1 можно заменить микросхемой К561ЛА7; микросхему D2 - микросхемой К561ИЕ10, соединив последовательно оба счетчика; все резисторы в схеме типа МЛТ- 0,125 Вт, за исключением резистора R8, который должен быть не менее 1 Вт; допуски на все резисторы, за исключением резистора R8, и на все конденсаторы +30 %; шунт (R10) можно изготовить из ни- хрома общим сечением не менее 6 мм (общий диаметр около 3 мм, длина 1,3- 1,5 мм). Включать ПЗУ в работу только в следующей последовательности: отключить нагрузку, выставить резистором R5 требуемое напряжение, выключить ПЗУ, подключить нагрузку и при необходимости увеличить резистором R5 напряжение до требуемой величины.

Для решения проблемы запуска двигателя зимой применим электропускатель который позволит автолюбителям, заводить холодный двигатель даже при неполностью заряженном аккумуляторе и тем самым продлить ему жизнь.

Расчет. Проведение точного расчета магнитопровода трансформатора нецелесообразно, так как он находится под нагрузкой короткое время, тем более неизвестны ни марка, ни технология прокатки электротехнической стали магнитопровода. Находим требуемую мощность трансформатора. Основным критерием служит рабочий ток электропускателя Iпуск , который находится в пределах 70 - 100 А. Мощность электропускателя (Вт) Рэп = 15 Iпуск . Определяем сечение магнитопровода (см 2) S = 0,017 x Рэп = 18...25,5 см2 . Схема электропускателя очень проста, надо всего лишь правильно выполнить монтаж обмоток трансформатора. Для этого можно использовать тороидальное железо от любого ЛАТРА или от электродвигателя. Для электропускателя я применил трансформаторное железо асинхронного электродвигателя, который выбрал с учетом поперечного сечения. Параметры S = ав должны быть не меньше расчетных.


В статоре электродвигателя имеются выступающие пазы, которые использовались для укладки обмоток. При расчете поперечного сечения их не учитывать. Удалять их нужно простым или специальным зубилом, но можно и не удалять (я не удалял). Это влияет только на расход электропровода первичной и вторичной обмоток и на массу электропускателя. Наружный диаметр магнитопровода в пределах 18 - 28 см. Если поперечное сечение статора электродвигателя больше расчетного, придется его расчленить на несколько частей. Ножовкой по металлу распиливаем наружные стяжки в пазах и отделяем тор необходимого поперечного сечения. Напильником удаляем острые углы и выступы. На готовом магнитопроводе проводим изоляционные работы лакотканью или изоляционной лентой на тканевой основе.

Теперь приступаем к первичной обмотке, количество витков которой определяем по формуле: n1 = 45 U1/S , где U1 - напряжение первичной обмотки, обычно U1 = 220 В; S - площадь сечения магнитопровода.

Для нее берем медный провод ПЭВ-2 диаметром 1,2 мм. Предварительно рассчитываем общую длину первичной обмотки L1. L1 = (2а + 2в) Ку , где Ку - коэффициент укладки, который равен 1,15 - 1,25; а и в - геометрические размеры магнитопровода (рис.2).

Затем наматываем провод на челнок и производим монтаж обмотки в навал. Подключив выводы к первичной обмотке, обрабатываем ее электротехническим лаком, высушиваем и производим изоляционные работы. Количество витков вторичной обмотки n2 = n1 U2/U1 , где n2 и n1 - количество витков соответственно первичной и вторичной обмоток; U1 и U2 - напряжение первичной и вторичной обмоток (U2 = 15 В).

Обмотку выполняем изолированным многожильным проводом с поперечным сечением не менее 5,5 мм2. Применение шинопровода предпочтительней. Внутри провод располагаем виток к витку, а с внешней стороны с небольшим зазором - для равномерного расположения. Его длину определяем с учетом размеров первичной обмотки. Готовый трансформатор размещаем между двумя квадратными гетинаксовыми пластинами толщиной 1 см и шириной на 2 см больше, чем диаметр намотанного трансформатора, предварительно просверлив по углам отверстия для крепления стяжными болтами. На верхней пластине размещаем выводы первичной (изолируем) и вторичной обмоток, диодный мостик и ручку для транспортировки. Выводы вторичной обмотки подключаем к диодному мостику, а выходы последнего оборудуем гайками-барашками М8 и маркируем "+", "-". Пусковой ток легкового автомобиля составляет 120 - 140 А. Но так как аккумулятор и электропускатель работают в параллельном режиме в расчет принимаем максимальный ток электропускателя 100 А. Диоды VD1 - VD4 типа В50 на допустимый ток 50 А. Хотя время запуска двигателя небольшое, диоды желательно разместить на радиаторах. Выключатель S1 устанавливаем любой на допустимый ток 10 А. Соединительные провода между электропускателем и двигателем многожильные, диаметром не менее 5,5 мм разных цветов и концы выводных наконечников оборудуем зажимами типа "крокодил".

Пуско-зарядное устройство ПЗУ-14-100

По схеме пуско-зарядного устройства хорошо видно, что тиристоры управляются токовыми импульсами цепи емкость C4 - транзисторы VT5, VT6, VT7 - диоды VD4, VD5. Фаза отпирания тиристоров и протекание тока в силовой цепи зависят от скорости увеличения напряжения на емкости конденсатора C4, то есть от тока через сопротивления регулятора тока R23-R25 и через биполярный транзистор пуска VT3. VT3 включается в режиме "пуск", если напряжение на акумуляторе снижается ниже уровня 11 В. Ключевой транзистор VT4 включает цепь управления при правильном подсоединении к батареии и защищает её при превышении тока и перегреве обмоток. Для надежной работы этой цепи требуются максимально одинаковые половинки вторичной обмотки, обычно их делают навивкой в два провода или разделением концов "косички" надвое. Ток протекающий в обмотке измеряется по разности напряжений на нагруженной и свободной половинах, т.к - они нагружаются по очереди.

Сегодня тема нашего поста называется маленькое самодельное пусковое устройство для завода автомобиля, именно пусковое, а не зарядное, так как про и у нас имеется много статей на этом сайте. Поэтому сегодня исключительно о самодельном пускаче для аккумулятора.

Портативные пусковые устройства для транспортных средств своими руками

Итак, что из себя вообще представляет пусковое устройство для автомобиля в нашем случае для хендай санта фе, но это не особо важно для какого авто, более важна емкость аккумулятора через который и предстоит производить запуск двигателя этому пусковому устройству.

Схема пускового устройства для автомобиля своими руками

В этой статье мы рассмотрим самую простейшую схему пускового устройства для автомобиля своими руками, потому как большинство не обладает познаниями в схемотехнике и электронике для создания сложных пусковых устройств да и не всегда это выгодно закупать много деталей для самоделки, которые иногда по себестоимости могут выйти как бюджетное готовое пусковое устройство для автомобиля из магазина.

Итак, в нашем случае для пускача мы не предполагаем приобретение дорогостоящей портативной батареи большой емкости иначе устройство сразу же из бюджетного превратится в очень дорогостоящее.

Мы же будем мастерить пусковое устройство для автомобиля от сети 220в, для этого нам понадобиться мощный трансформатор, желательно по мощности не менее 500Ватт, а желательнее 800 Ватт, в идеале 1.2-1.4 киловатта = 1400ватт. Так как при старте двигателя отдаваемый аккумулятором первый импульс для проворота коленвала = 200Амперам а потребляемость стартера примерно 100Амперам, и вот когда наше устройство 100А объединится с аккумулятором ни как раз выдадут 200А на старте и потом наш пускач поможет поддержать силу тока 100Ампер для нормального запуска и работы стартера до тех пор пока двигатель не запуститься полностью.

Вот как выглядит схема пускового устройства для автомобиля своими руками, фото ниже

Трансформатор для пускового устройства автомобиля

Для создания такого пускового устройства от сети трансформаторного типа нужно перемотать сам трансформатор.

Нам понадобятся:

  • Сердечник трансформатора
  • Медная проволока 1.5мм-2мм
  • Медная проволока 10мм
  • Два мощных диода как на сварочных аппаратах
  • Зажимы крокодильчики для удобства пользования и присоединения проводов пускача к аккумуляторное батареи автомобиля, очень желательно медные, так как у них большая проводимость, и толстые толщиной не менее 2мм

Собственно приступаем к процессу изготовления портативного пускового устройства для автомобиля своими руками

Для этого нужно сделать первичную обмотку трансформатора медной проволокой в изоляции диаметром не менее 1.5-2мм, количество витков будет примерно 260-300.

После того как вы намотаете эту проволоку на сердечник трансформатора вам необходимо замерять силу тока и напряжение, выдаваемое на выходе этих обмоток, оно должно быть в диапазоне 220-400 мА.

Если у вас получилось меньше, то отмотайте несколько витков обмотки, а если получилось более значении, то наоборот домотайте.

Теперь надо намотать вторичную обмотку трансформатора пуско зарядного устройства. Её желательно наматывать многожильным кабелем толщиной не менее 10мм, как правило вторичная обмотка содержит 13-15 витков, на выходе при замерах на вторичной обмотке вы должны получить 13-14 вольт, при этом как вы понимаете напряжение стало маленьким 13 вольт всего, но зато сила тока протекающему по нему возросла примерно до 100Ампер, а была всего 220-400 миллиампер, то есть сила тока возросла примерно в 300-400 раз, а напряжение уменьшилось примерно в 15 раз.

Для аккумулятора важно и то и другое, но в данном случае ключевую роль играет именно сила тока.

Разъяснения по намотке

Если у вас не получается достичь напряжение 13-14 вольт, тогда просто намотайте на вторичную обмотку 10 витков, замерьте напряжение, теперь это напряжение разделите на количество витков в нашем случае 10 и получите напряжение одного витка, а дальше просто помножьте сколько витков нужно для достижения 13-14 вольт на выходе вторичной обмотки трансформаторного самодельного пускового устройства.

Для понятности давайте рассмотрим пример:

МЫ намотали вторичную обмотку 10 витком, замеряем мультиметром напряжение, у нас к примеру, получилось 20вольт, а нужно примерно 13.

Значит, берем наше напряжение 20 вольт и делим на количество намотанных витков 10 = 20/10=2, число 2 это 2 вольта выдает нам напряжение один виток, значит, как нам достичь 13-14 вольт зная, что один виток выдал 2 вольта.

Берем значение необходимого нам напряжения давайте это будет 14 вольт, и делим его на напряжение одного витка 2 вольта, = 14/2=7, число 7 это количество витков на вторичной обмотке зарядного устройства автомобиля необходимое для достижения 14 вольт выходного напряжения.

Все теперь мотаем наши 7 витков. А к выходам этих витков согласно схема пускового устройства для автомобиля своими руками которая расположена выше присоединяем наши диоды, некоторые автолюбители ещё используют и схему с одним диодом и одной лампой на 12в 60-100ватт, как на фото ниже

Как заводить автомобиль с помощью самодельного пускового устройства

Одеваете клеммы нашего самодельного пускового устройства на сверху клемм аккумулятора, аккумулятор так же подключен к автомобилю, включаем наш пускач и сразу же пытаемся произвести запуск двигателя, как только двигатель завелся, пусковое устройство тут же отключаем от сети и отсоединяем от аккумулятора.

Конденсаторное пусковое устройство для автомобиля

Некоторые автовладельцы, имея в своем распоряжении конденсаторы большой мощности или правильнее сказать емкости, делают конденсаторное пусковое устройство для автомобиля своими руками используя их вместо портативное переносной батареи. То есть такое устройство можно быстро за минуту зарядить от сети, потом поднести к автомобилю, и произвести запуск двигателя, не подключая пускач к сети.

Но как правило такая схема требует неких глубоких познаний в электронике и понимании емкости конденсаторов и принципа их работы, да и если у вас нет завалявшихся кондеров, то покупать их будет не целесообразно, так как конденсаторы большой емкости очень дорогие, а вам потребуется их несколько штук а то и десяток и как тог цена будет никак не ниже хорошего пускового устройства заводского изготовления, при этом вы ещё потратите кучу нервов на создание такого уда и времени.

Кстати в наших краях приобрело некую популярность конденсаторное пусковое устройство для автомобиля беркут - вот его фото ниже

Поэтому именно трансформаторный пускач во времена СССР, да и сейчас тоже имеет наибольшую распространённость, магазинные варианты таких пускачей, конечно, доработаны и содержат различные дополнительные элементы, делающие запуск двигателя от сети проще и безопаснее.

На состоянии аккумулятор любой запуск с любого вида пускача всегда сказывается негативно, так как аккумулятор получает большой ток в очень малый период времени, что постепенно ведет к деградации и разрушению его пластин при системном запуске от пускача.

Поэтому лучше все же использовать зарядное устройство, если вам нет срочности запустить двигатель именно сейчас.

Ну а наш пост под название самодельный портативный пускач для авто подходит к концу. Напишите ваши отзывы, что вы думаете о такой схеме запускаемого устройства, доводилось ли вам её использовать и получилось ли завести двигатель вашего автомобиля.

Категории: / / от 07.03.2017

Зарядно-пусковое устройство представленное в этой статье позволяет запустить автомобиль в зимнее время. Как известно пуск в зимнее время двигателя внутреннего сгорания автомобиля с подсевшим аккумулятором требует много сил и времени.

Плотность электролита, вследствие продолжительного хранения, существенно понижается, а протекающий внутри аккумулятора процесс сульфатации увеличивает внутреннее сопротивление его, тем самым, уменьшая стартовый ток аккумулятора. Плюс ко всему, в зимнее время повышается вязкость моторного масла, что требует от автомобильного аккумулятора большей стартовой мощности.

Как известно, облегчить пуск автомобиля зимой можно несколькими способами:

  • разогреть масло в картере авто;
  • завести машину от другой машины с надежным аккумулятором;
  • завести «с толкача»;
  • применить зарядно-пусковое устройство (ЗПУ).

Вариант с применением пускового устройства более удобен при хранении автомобиля в гараже либо на платной стоянке, где есть возможность подключить пусковое устройство к электросети. Помимо этого данное зарядно-пусковое устройство поможет не только завести авто с севшим аккумулятором, но и быстро восстановить и зарядить его.

В основном в промышленных образцах зарядно-пускового устройства, аккумулятор подзаряжается от источника питания средней мощности имеющий номинальный ток в пределах до 5А, которого, как правило, не хватает для непосредственного отбора тока стартером автомобиля. Несмотря на то что внутренняя емкость автомобильных аккумуляторных ПЗУ весьма велика (у некоторых моделях до 240 А/ч), но все же после нескольких заводов они, так или иначе «садятся», а быстро восстановить их заряд не получится.

Портативный USB осциллограф, 2 канала, 40 МГц....

Шагомер, расчет калорий, мониторинг сна, контроль сердечного ритма...

Набор для сборки часов. Цветной дисплей, датчик света, сенсорное...

Данное зарядно-пусковое устройство, отличается от промышленного прототипа незначительной массой и возможностью в автоматическом режиме поддерживать рабочее состояние аккумулятора ПЗУ, вне зависимости от срока хранения или эксплуатации. Даже если в ПЗУ нет внутреннего аккумулятора, он все равно может кратковременно выдать пусковой ток до 100А. Также существует неплохая с регулировкой тока заряда.

Для восстановления пластин аккумулятора и снижения температуры электролита во время зарядки, в зарядно-пусковом устройстве предусмотрен режим регенерации. В данном режиме происходит чередования импульсов зарядного тока и пауз.

Принципиальная схема

Схема пускового зарядного устройства содержит симисторный регулятор напряжения (VS1), силовой трансформатор (T1), выпрямитель на мощных диодах (VD3, VD4) и стартерный аккумулятор (GB1). Ток подзарядки выбирается регулятором тока на симисторе VS1, его ток регулируется переменным резистором R2 и зависит от емкости аккумулятора.

Входная и выходная цепи зарядки имеют фильтра, который уменьшает степень радиопомех при работе симисторного регулятора. Симистор VS1 обеспечивает регулировку тока зарядки при разбросе напряжения сети в пределах от 180 до 220 В.

Обвязка симистора состоит из R1-R2-C3 (RC цепь), VD2 и диодного моста VD1. Константа времени RC — цепи влияет на момент открытия динистора (отсчитывая от начало сетевого полупериода), который включен в диагональ выпрямительного моста через ограничительный резистор R4. Выпрямительный мост осуществляет синхронизацию включение симистора в обоих полупериодах сетевого напряжения. В режиме «Регенерация» применяется только один полупериод сетевого напряжения, что способствует отчистке пластин аккумулятора от имеющейся кристаллизации. Конденсаторы С1 и С2 уменьшают степень помех от симистора в сети до приемлемых уровней.

Детали

В зарядно-пусковом устройстве применен силовой от телевизора «Рубин». Возможно также использование трансформатора типа ТСА-270. Перед тем как перемотать вторичные обмотки (первичные остаются без изменений), каркасы отделяются от железа, все бывшие вторичные обмотки (до фольги экранов) удаляют, а на освободившееся место наматывают медным проводом сечением 1,8…2,0 мм2 в один слой (до заполнения) вторичные обмотки. В результате перемотки напряжение одной обмотки должно получиться примерно 15… 17 В.

Для визуального контроля зарядного и пускового тока в схему зарядно-пускового устройства введен амперметр с шунтирующим резистором. Сетевой выключатель SA1 должен быть рассчитан на максимальный ток 10 А. Сетевой переключатель SA2 (типа ТЗ или П1Т) позволяет выбрать максимальное напряжение на трансформаторе в соответствии с напряжением сети. Внутреннего аккумулятора марки 6СТ45 или 6СТ50 должно хватить на 3-5 одновременных пусков. Резисторы в ЗПУ можно применить типа МЛТ или СП, конденсаторы С1,С2 — КБГ-МП, C3 – МБГО, С4 — К50-12, К50-6. Диоды Д160 (без радиаторов) можно поменять на другие с допустимым током более 50 А, симистор — типа ТС. Подсоединение ЗПУ к аккумулятору автомобиля необходимо производить мощными зажимами «Крокодил» (на рабочий ток до 200 А). В устройстве важно применить заземление.

Настройка

При настройке к устройству подсоединяется (соблюдай полярность!) внутренний аккумулятор GB1, и испытывается регулировка зарядного тока резистором R2. Затем проверяется зарядный ток в режиме заряда, пуска и регенерации. Если ток не более 10…12А, то ЗПУ находится в рабочем состоянии. При подсоединении зарядно-пускового устройства к аккумулятору автомобиля, ток заряда вначале должен возрасти примерно 2-3 раза, а через 10 — 30 мин понизиться до первоначального значения. После этого переключатель SA3 щелкается в режим «Пуск», и происходит завод двигателя автомобиля. В случае неудачной попытки завести двигатель, производится дополнительная подзарядка в течение 10 — 30 мин, и попытка повторяется.

Зима, мороз, машина не заводится, пока пробовали завести, аккумулятор разрядился в конец, чешем “репу”, думаем, как решить проблему… Знакомая ситуация? Думаю, те кто живет в северных районах нашей необъятной, не раз сталкивались с проблемным заводом своего авто в холодное время года. И вот тогда возникает такой случай, начинаем думать, а неплохо было бы иметь под руками пусковое устройство, предназначенное именно для таких целей.

Естественно покупать такой девайс промышленного производства не есть дешевое удовольствие, поэтому целью данной статьи является предоставить вам информацию, каким образом пусковое устройство можно сделать своими руками с минимальными затратами.

Схема пускового устройства, которую мы хотим вам предложить, простая, но надежная, смотри рисунок 1.

Это устройство предназначено для пуска двигателя транспортного средства с 12 вольтовой бортовой сетью. Основным элементом схемы является мощный понижающий трансформатор. Жирными линиями на схеме обозначены силовые цепи, идущие от пускового устройства на клеммы аккумулятора.

По выходу вторичной обмотки трансформатора стоят два тиристора, которые управляются узлом контроля напряжения. Узел контроля собран на трех транзисторах, порог срабатывания определяется номиналом стабилитрона и двумя резисторами, образующими делитель напряжения.

Работает устройство следующим образом. После подключения силовых проводов к клеммам аккумулятора и включении сети, никакого напряжения на батарею не подается. Начинаем заводить двигатель, и если U аккумулятора упадет ниже порога срабатывания узла контроля напряжения (это ниже 10 вольт), оно подаст сигнал на открытие тиристоров, аккумулятор получит подпитку от пускового устройства.

При достижении напряжения на клеммах выше 10 вольт, пусковое устройство запрет тиристоры, подпитка батареи прекратится. Как говорит автор данной конструкции, такой метод позволяет не наносить вред автомобильному аккумулятору.

Трансформатор для пускового устройства.
Для того чтобы прикинуть, какой мощности нужен трансформатор для пускового устройства, нужно учесть, что в момент пуска стартера, он потребляет ток порядка 200 ампер, а когда раскрутится – ампер 80-100 (напряжение 12 – 14 вольт). Так как пусковое устройство подсоединяется непосредственно к клеммам аккумулятора, то в момент завода автомобиля какая-то часть электроэнергии будет отдаваться самим аккумулятором, а какая-то часть будет идти от пускового устройства. Умножаем ток на напряжение (100 х 14), получаем мощность 1400 ватт. Хотя автор вышеприведенной схемы утверждает, что и 500 ваттного трансформатора достаточно для завода автомобиля с бортовой сетью 12 вольт.

На всякий случай напомним формулу соотношения диаметра провода к площади поперечного сечения, это диаметр в квадрате умноженный на 0,7854. То есть два провода диаметром 3 мм дадут (3*3*0,7854*2) 14,1372 кв. мм.

Приводить конкретные данные по трансформатору в этой статье особого смысла не имеет, ведь для начала необходимо как минимум иметь более-менее подходящее трансформаторное железо, ну а потом, опираясь на фактические размеры, произвести расчет намоточных данных именно для него.

Остальные элементы схемы.

Тиристоры: при двухполупериодной схеме – на ток от 80А и выше. Например: ТС80, Т15-80, Т151-80, Т242-80, Т15-100, ТС125, Т161-125 и т.д. При реализации второго варианта с использованием мостового выпрямителя (смотри схему выше), тиристоры должны быть раза в 2 мощнее. Например: Т15-160, Т161-160, ТС161-160, Т160, Т123-200, Т200, Т15-250, Т16-250 и им подобные.

Диоды: для моста выбирайте такие, чтобы держали ток порядка 100 ампер. Например: Д141-100, 2Д141-100, 2Д151-125, В200 и подобные. Как правило анод у таких диодов выполнен в виде толстого жгута с наконечником.
Диоды КД105 можно заменить на КД209, Д226, КД202, подойдут любые на ток не меньше 0,3 ампера.
У стабилитрона U стабилизации должно быть порядка 8-ми вольт, можно ставить 2С182, 2С482А, КС182, Д808.

Транзисторы: КТ3107 можно заменить на КТ361 с коэффициентом усиления (h21э) больше 100, КТ816 можно заменить на КТ814.

Резисторы: в цепи управляющего электрода тиристора ставим резисторы мощностью 1 ватт, остальные – не критично.

Если вы решите сделать силовые провода съемными, предусмотрите, чтобы разъем подключения мог выдерживать пусковые токи. Как вариант, можно применить разъемы от сварочного трансформатора или инвертора.

Сечение соединительных проводов, идущих от трансформатора и тиристоров до клемм, должно быть не меньше сечения провода, которым намотана вторичная обмотка трансформатора. Провод подсоединения пускового устройства к сети 220 вольт желательно поставить с сечением жил 2,5 кв. мм.

Чтобы данное пусковое устройство работало с автомобилями, у которых бортовая сеть имеет напряжение 24 вольта, вторичная обмотка понижающего трансформатора должна быть рассчитана на напряжение 28…32 вольта. Так же подлежит замене стабилитрон в узле контроля напряжения, т.е. Д814А нужно заменить двумя последовательно соединенными Д814В или Д810. Подойдут и другие стабилитроны, например, КС510, 2С510А или 2С210А.



Похожие публикации