Вл 85 технические характеристики. Тележка

51 52 53 54 55 56 57 58 59 ..

Глава 5. ТРАНСФОРМАТОРЫ И ДРОССЕЛИ ЭЛЕКТРОВОЗА BЛ85

§ 5.1.

Электровоз BЛ85. Трансформатор тяговый ОНДЦЭ-10000/25-82УХЛ2

Трансформатор ОНДЦЭ-10000/25-82УХЛ2 (рис. 5.1, а) предназначен для преобразования напряжения КС в напряжение цепей тяговых двигателей, включенных через тиристорный преобразователь, а также для питания цепей собственных нужд электровоза. Трансформатор имеет следующие технические данные:

Номинальная мощность сетевой обмотки, кВ*А......... 7040

Номинальное напряжение сетевой обмотки, кВ 25

Частота, Гц 50

Перенапряжения, ограничиваемые разрядником, не более, кВ 100

Номинальное напряжение тяговых обмоток на вводах, В:

А1-x1; а2-х2 630

АЗ-х3; а4-х4 630

А5-х5; аб-хб 630

1-x1, al-1, 2-хЗ, аЗ-2, 3-х5, а5-3 315

Номинальный ток тяговых обмоток, А. 1700

Перегрузочный ток пятнадцатиминутного режима (при начальной температуре обмоток, не превышающей +40°С), А 2700

Напряжение КЗ между сетевой и одной тяговой обмотками или ее частью, отнесенное к мощности одной тяговой обмотки или ее части, %, не более 5

Напряжение КЗ между сетевой и всеми тяговыми обмотками, отнесенное к общей мощности тяговых обмоток, % 9,5

Обмотка питания цепей возбуждения (ОВ) номинальное напряжение на вводах, В:

А8-х7 270


номинальный ток обмотки и вводов а7, х7, А. 650

Перегрузочный ток пятнадцатиминутного режима обмотки и вводов а7, х7 (при начальной температуре обмоток, не превышающей + 40 °С), А 1200

Номинальный и перегрузочный токи пятнадцатиминутного режима ввода а8 соответственно, А. 870, 1600

Номинальные напряжения ответвлений обмотки собственных нужд на вводах. В:

А9-х9 630

Номинальный ток обмотки собственных нужд на вводах а10-х9, А 650 Перегрузочный ток обмотки собственных нужд в течение не более 3ч, А 1200

Напряжение КЗ между сетевой обмоткой и обмоткой собственных

Нужд на ответвлении а10-а9, отнесенное к мощности обмотки

Собственных нужд, %, не более. 4

Схема и группа соединения обмоток, 1/1/1/1/1/1/1/1/1 -

0-0-0-0-0-0-0--0

Общие потери, кВт 84

Ток XX, % 1,3

Масса, кг 9900

Трансформатор состоит (см. рис. 5.1,

А) из следующих основных узлов: двухстержневого магнитопровода, обмоток, бака и системы охлаждения.

Магнитопровод шихтован из пластин с прямым стыком в углах. Стяжку стерж-ней производят бандажами из стекло-ленты. Верхнее и нижнее ярма прессуют балками корытного сечения. Нижние балки одновременно являются камерами маслораспределення.

Обозначения вводов обмоток приведены на рис. 5.1, б. Расположение обмоток концентрическое. В первом концентре установлена сетевая обмотка (А-X),-намотанная на изоляционный цилиндр, во втором концентре - блоки вторичных обмоток. На одном стержне магнито-провода расположена группа тяговых обмоток с нечетными номерами (а1-xl; аЗ-хЗ; а5-х5) и обмотка собственных нужд (а9-х9); на втором стержне - группа обмоток с четными номерами (а2-х2; а4-х4; аб-хв) и обмотка питания цепей возбуждения (а7-х7). Тяговые обмотки намотаны на изоляционных цилиндрах; обмотки возбуждения и собственных нужд - поверх тяговых обмоток.

Бак 6 прямоугольной формы заполнен трансформаторным маслом. В его нижней части расположены вентиль 4 для слива и доливки масла, кран 5 для взятия пробы масла, упоры 13 для крепления активной части. На дне бака и торце швеллера расположены пробки 3 и 14 для слива остатков масла. На стенках размещены термометр 11, манометр 10, крюки 9 для подъема трансформатора.

Система охлаждения - масляно-воздушная. Она состоит из восьми радиаторных секций 17, обдуваемых воздухом, и электронасоса 12, который обеспечивает циркуляцию масла через обмотки и радиаторы. На крышке бака установлены скобы 16 для подъема активной части, расширитель 7, предназначенный для компенсаций температурных колебаний уровня масла в баке, вводы обмоток сетевой 8, тяговых 2, возбуждения 1 и собственных нужд 15. На расширителе, смонтирован указатель уровня масла и снликагелевый воздухоосушитель с масляным затвором. Соединение вводов с отводами обмоток и внешним монтажом выполнено демпферами из гибких медных проводников.

Более подробное описание устройства и работы трансформатора приведено в техническом описании и инструкции по эксплуатации на трансформатор, которые прилагаются к каждому электровозу.

Связи кузова с тележками предназначены для передачи всех видов усилий от рамы кузова к тележкам как вертикальных, так и горизонтальных, продольных и поперечных. Связь кузова с крайними тележками состоит из люлечного подвешивания, упоров, тягового устройства тележек, наклонной тяги и установки гасителей колебаний. Связь кузова со средней тележкой включает опору кузова, тяговое устройство тележек и наклонную тягу.

Люлечное подвешивание, обеспечивая относительную поперечную подвижность кузова и тележек, способствует улучшению ходовых качеств электровоза.

Люлечное подвешивание состоит из люлечных подвесок, горизонтальных и вертикальных упоров. Люлечная подвеска представляет собой стержень (рис. 14, 15), к нижней части которого приложена вертикальная нагрузка от кузова.

Рис. 14. Люлечная подвеска.

Кузов своими кронштейнами через балансир устанавливается на нижний шарнир люлечного подвешивания, состоящий из опор и прокладки. Нижний шарнир удерживается на стержне гайкой, которая стопорится шплинтом.

Вертикальная нагрузка через съёмную шайбу стержня, пружину, изготовленную из стали, фланец стакана и верхний шарнир, состоящий из опор и прокладки, передаётся на раму тележки (кронштейн). Шарниры люлечной подвески обеспечивают колебательное движение стержня, вызванное горизонтальными поперечными перемещениями кузова и поворотом тележки относительно кузова. Поверхности стержня и стакана облицованы износостойкими втулками. Для смазки поверхностей трения между стержнем и стаканом в стержне предусмотрены каналы. В центральное смазочное отверстие ввёрнут штуцер, имеющий отверстие с резьбой, через которое заправляют смазку.

Рис. 15. Люлечная подвеска.

Люлечная подвеска имеет страховочный трос, который предотвращает падение деталей нижнего шарнира при обрыве стержня.

Рис. 16. Горизонтальный и вертикальный упоры.

Горизонтальный упор (рис.16) состоит из крышки, пружины, корпуса и регулировочных прокладок, позволяющих выдерживать зазор в заданных пределах. Корпус и крышка облицованы внутри втулками. Крышка упора с внешней стороны имеет вкладыш, выполненный из марганцовистой стали, который непосредственно входит в контакт с термообработанной накладкой на боковине рамы тележки при восприятии горизонтальных усилий.

Для ограничения вертикальных колебаний кузова относительно тележки и предотвращения смыкания витков пружин люлечных подвесок служит вертикальный упор, состоящий из крышки, резиновой шайбы, корпуса, регулировочных прокладок, позволяющих выдерживать зазор в заданных пределах. Горизонтальный и вертикальный упоры крепятся к кузову шпильками.


Горизонтальные усилия от кузова на тележку передаются люлечными подвесками при поперечном отклонении кузова до 15 мм от среднего положения и люлечными подвесками в параллель с горизонтальным упором при перемещении кузова от 15 до 30 мм. После сжатия пружины горизонтального упора на рабочий ход 15 мм упор работает как жёсткий ограничитель.

Тяговое устройство тележекявляется жёстким продолжением рамы тележки, предназначенным для выноса точки присоединения наклонной тяги кузова. Тяговое устройство тележек состоит из тяги, смонтированной на кронштейне концевого бруса рамы тележки и соединённой с кронштейном тяги, которая другим концом закреплена на кронштейне средней балки рамы тележки. Тяга выполнена из толстолистовой стали и имеет форму вытянутого вала. В отверстия тяги запрессованы шарнирные подшипники. Другая тяга сварная и состоит из толстолистового треугольника с приваренными литыми головками для закрепления на среднем брусе рамы тележки с литым Г-образным кронштейном для соединения с тягой и наклонной тягой кузова. Соединение тяг между собой и подсоединение к кронштейнам рамы тележки выполняют шарнирно при помощи валиков. Валики стопорятся корончатыми гайками, и планками.

Рис. 17.Тяговое устройство тележки.

Наклонная тяга крайней и средней тележек предназначена для передачи сил тяги и торможения от тележки к кузову. Тяга представляет собой толстостенную трубу с приваренными по концам литыми головками.

Одной головкой тягу крепят к вилке буферного устройства кузова, другой – к тяговому устройству тележки. Крепление тяги осуществляют валиками с гайкой. Тросик страхует тягу от возможного падения на путь при поломках. Подвижность тяги в горизонтальной плоскости при относе кузова в разворотах тележки обеспечивают шарнирные подшипники, запрессованные в головках тяги.

Буферное устройство кузова состоит из двух резиновых шайб, охваченных фланцами и предварительно стянутых вилкой и гайкой. Длину вилки регулируют установкой необходимого числа шайб.

Рис. 18. Опора средней тележки.

Опора представляет сжатый упругий стержень, опирающийся на кузов и тележку через сферические шарниры, которые обеспечивают подвижность кузова относительно тележки в горизонтальном направлении. Опора состоит из нижнего и верхнего стержней, пружины с регулировочными прокладками.

Поверхности трения стержней облицованы износостойкими втулками. Нижним концом опора через вкладыш опирается на головку, запрессованную в опору тележки, верхним концом – на головку, запрессованную в винт. Пара – вкладыш и головка – образуют верхний и нижний сферические шарниры опоры.

Электровоз ВЛ85

Вплоть до начала XIX века уголь и руду с шахт и рудников вывозили по чугунным рельсам. Груженые и порожние вагоны передвигались лошадьми. Первыми локомотивами были паровозы. Первый паровоз, двигавшийся по рельсам, был построен англичанином Р. Тревитиком в 1803 году для одного из рельсовых путей в шахте. Вслед за ним построили паровозы и другие изобретатели, но широкого практического применения эти паровозы не получили. Наиболее удачным оказался паровоз Дж Стефенсона, построенный в 1814 году. В 1829 году паровоз Стефенсона «Ракета» победил паровозы других конструкторов на состязании в Ренхилле, целью которых было выбрать наилучшую конструкцию паровоза для железной дороги Ливерпуль – Манчестер. Дж. Стефенсон стал родоначальником железнодорожного транспорта. В XX столетии паровозы строились во многих странах. В России первый паровоз был построен в 1834 году отцом и сыном Е.А. и М.Е. Черепановыми.

Первый электровоз был построен в середине 1890-х годов в США. То был электровоз постоянного тока, получавший энергию от тяговых подстанций.

В СССР первая электрифицированная железнодорожная линия с моторвагонными электропоездами появилась в 1926 году, первые электровозы – в 1933 году.

Со временем электрическая и тепловозная тяга вытеснила паровую почти со всех многочисленных магистралей нашей страны.

Железная дорога получает электроэнергию с крупных электростанций. Трехфазный ток высокого напряжения с них поступает на подстанции и там преобразуется в ток, нужный для тяги.

В первые годы электрификации пригородных участков железных дорог СССР с тяговых подстанций подавался постоянный ток напряжением 1500 В в медный контактный провод, подвешенный над рельсовым путем, а на первых магистральных участках применялся постоянный ток напряжением 3000 В. В 1960-1970-е годы стали на вновь электрифицируемых железных дорогах применять переменный однофазный ток частотой 50 Гц повышенного напряжения (25 кВ). Это дало возможность строить тяговые подстанции не через 20-30 километров, как при постоянном токе, а через 60-70 километров, то есть уменьшить вдвое-втрое их число, а подстанции делать более простыми и дешевыми. Повышенное напряжение позволяет уменьшить сечение контактного провода, требующего много меди. Это удешевляет контактную сеть.

На крыше электровоза укреплены токоприемники – пантографы, которые прижимаются к контактному проводу и передают электрический ток к тяговым двигателям электровоза.

Двигатели расположены под кузовом электровоза на каждой его оси. Первые отечественные электровозы имели 6 осей, размещенных в 2 трехосных тележках, значит, и 6 двигателей. Позднее стали выпускаться электровозы более мощные, с 8 осями в 4 двухосных тележках и с двигателями. Каждый двигатель с помощью системы зубчатых передач вращает «свою» колесную пару и тем самым приводит электровоз в движение. Ток, пройдя через пантограф к тяговым двигателям и совершив в них работу, уходит частью в рельсы, служащие вторым проводом, и затем через отсасывающие провода возвращается на тяговую подстанцию.

Большое достоинство электровоза – экономичность. Во время движения под уклон его двигатели работают как генераторы электрического тока, который поступает обратно в сеть. Такой режим называется рекуперационным (от латинского слова «recuperatio» – «обратное получение») торможением. Коэффициент полезного действия электровоза при этом достигает 88-90 процентов.

Кузов электровоза похож на вагон. На обоих его концах находятся кабины управления. Это позволяет электровозу двигаться в любом направлении – машинист должен лишь перейти из одной кабины в другую. У восьмиосных электровозов два кузова, соединенных друг с другом закрытым переходом. В кузове электровоза размещена электрическая аппаратура – ящики сопротивлений, контакторы, переключатели, а также всякого рода вспомогательные машины – мотор-генераторы, компрессоры, вентиляторы и т п.

Сейчас в России эксплуатируются электровозы переменного однофазного тока (питающее напряжение – 25 кВ и частота – 50 Гц), а также постоянного тока (напряжение – 3 кВ). Это мощные грузовые локомотивы отечественного производства серии ВЛ и чехословацкие пассажирские серии ЧС. Пассажирский электровоз серии ЧС4 мощностью 5100 кВт развивает скорость до 160 километров в час, а электровоз серии ВЛ85 мощностью 10020 кВт – до 110 километров в час.

ВЛ85 – мощнейший в мире локомотив на электротяге. Своему рождению он обязан БАМу. Для ее успешной эксплуатации Байкало-Амурской магистрали потребовался мощный надежный электровоз. Специалисты предложили несколько вариантов новых грузовых электровозов переменного тока.

Вот что пишет Олег Курихин в журнале «Техника – молодежи»:

«Одни предлагали выпускать только четырехосные секции и из них, в зависимости от веса поездов и профиля пути, составлять 8-, 12– и 16-осные локомотивы. На Новочеркасском электровозостроительном заводе освоили производство 2-секционного ВЛ80, к которому было можно прицеплять еще одну-две такие же машины. Вот только не всегда удавалось оптимально сочетать вес состава и локомотива, а иногда из-за избыточной мощности последнего возрастала стоимость перевозок.

По мнению других, помимо этих электровозов, следовало делать и 6-осные секции с двухосными тележками. Тогда, при однотипных тяговых электродвигателях, редукторах и системах управления, можно было бы составлять 8-, 10-, 12-, 14-, 16– и 18-осные машины, приноравливая их к конкретным условиям.

В обоих случаях секции замышлялись однокабинными, хотя некоторые специалисты стояли за 4– и 6-осные двухкабинные. И все же в итоге усилия сосредоточили на 12-осном локомотиве для тяжелых грузовых поездов и дорог с трудным профилем».

Теоретические исследования столь новой для отечественной практики ходовой части электровоза велись в Научно-исследовательском проектно-конструкторском и технологическом институте электровозостроения (ВЭлНИИ) и Ростовском-на-Дону институте инженеров железнодорожного транспорта (РИИЖТ). В результате решили проектировать 12-осный электровоз, у которого каждая из двух секций располагалась на трех 2-осных тележках с индивидуальным электроприводом.

При вождении тяжелых поездов новый локомотив должен был дать экономический эффект более 200 тысяч рублей в год (по курсу 1980 года), что стало основанием для включения будущей машины в официальный «Типаж магистральных электровозов».

Для экспериментальной проверки расчетов на Новочеркасском электровозостроительном заводе изготовили макет локомотива, в августе-сентябре 1981 года испытали его на разных скоростях и участках пути, подтвердив высокие качества ходовой части.

Проектирование электровоза ВЛ85 вел заместитель директора ВЭЛНИИ В.Я. Свердлов. В мае 1983 года построили первый образец, летом – второй. После опытного пробега на 5000 километров ВЛ85-001 предъявили МПС для испытаний, завершившихся вполне успешно.

«Механическую часть ВЛ85 выполнили так, – пишет Курихин, – чтобы кузов устанавливался на двухосные тележки с опорно-осевой, а в перспективе опорно-рамной подвеской тяговых электродвигателей, секции соединили автосцепкой, раму кузова спроектировали с учетом продольного усилия до трехсот тонн. В секциях смонтировали по трансформатору с тремя вторичными обмотками (по числу тележек), нагруженными через собственные преобразователи двумя соединенными параллельно тяговыми электродвигателями. Большое внимание уделили компоновке, вентиляции кузова и тяговых моторов, системе управления, снижению расходов энергии для собственных нужд локомотива».

Впервые в отечественной практике на ВЛ85 установили автоматизированную систему управления (АСУ), построенную на основе микропроцессоров и другой микроэлектроники, позволившую плавно разгонять состав до требуемой скорости с заданным током тяговых электродвигателей. После этого АСУ поддерживала постоянную скорость на ровном пути, а на спусках выполняла электрическое притормаживание. Кроме того, она контролировала рекуперацию, торможение до полной остановки, распределение усилия при двойной тяге. Благодаря ей удалось увеличить разгон на шесть процентов, замедление поезда – на десять процентов. По сравнению с ВЛ80Р расход энергии на новом локомотиве уменьшился больше чем на треть, и почти 1,2 раза возрос ее возврат в контактную сеть при режиме рекуперации. АСУ обеспечила надежную работу локомотива при колебаниях подаваемого напряжения в пределах 19-29 кВ».

А вот некоторые технические данные электровоза ВЛ85. Сцепной вес – 288 тонн. Габариты: длина – 45 метров, ширина – 3,16 метра, высота – 5,19 метра. Усилие тяги в часовом режиме при скорости 49,1 километра в час – 74 тонны.

Сначала оба электровоза испытывали на кольце Новочеркасского завода, потом динамику и воздействие на путь ВЛ85-001 – на Северо-Кавказской дороге, а тягово-энергетические характеристики ВЛ85-002 – на экспериментальном кольце ВНИИЖТ в Щербинке. Затем локомотивы передали для опытной эксплуатации на линии Белореченская – Майкоп, Мариинск – Красноярск – Тайшет, Абакан – Тайшет – Лена. Государственная комиссия отнесла их к высшей категории качества и рекомендовала НЭВЗу в 1985 году выпустить пять таких машин, а со следующего года приступить к их серийному производству.

Уже начиная с третьего локомотива стали применять лучшие тяговые электродвигатели НБ-514 и продолжали модернизацию. К январю 1995 года было выпущено 272 таких электровоза. Они вышли на рельсы Южно-Уральской, Красноярской, Восточно-Сибирской и Байкало-Амурской магистралей.

К сожалению, в последние годы объем перевозок значительно снизился, мощные ВЛ85 нередко работают с изрядной недогрузкой, что существенно удорожает стоимость доставки грузов по железной дороге.

Как это часто бывает, пришлось воспользоваться рекомендациями специалистов, которые в 1970-е годы предлагали производить 6-осные двухкабинные электровозы переменного тока с тремя 2-осными тележками, наиболее подходящими для составов в 4-5 тысяч тонн. МПС заказало такой локомотив, обозначенный ВЛ65. В сочетании с ВЛ80 и ВЛ85 они должны обеспечить нормальный грузооборот на дорогах переменного тока.

Каждой секции электровоза опирается на три двухосные тележки . Тяговые и тормозные усилия передаются на кузов с помощью наклонных тяг (традиционной для тепловозов и электровозов является схема с использованием шкворней). Средняя тележка принимает массу кузова не через примененные на электровозах ВЛ80С , ВЛ10У и крайних тележках ВЛ85 люлечные подвески, а через длинные качающиеся опоры, что позволяет ей более свободно смещаться в поперечном направлении при прохождении кривых.

Несмотря на теоретически бо́льшую стойкость тележек с наклонными тягами к боксованию (точка передачи тягового усилия находится ниже осей, поэтому момент от неё не складывается с вращающими моментами колес, способствуя разгрузке передней колесной пары, а компенсирует их), сцепные свойства ВЛ85 несколько хуже, чем у электровоза-предшественника ВЛ80 Р , вероятно, из-за невозможности равномерного распределения веса по трем тележкам.

Электрооборудование

Для обеспечения токосъёма с контактной сети использованы два токоприёмника типа пантограф , расположенные по концам каждой секции (над кабиной машиниста). Токоприёмники двух секций соединены между собой через шину, проходящую через всю длину крыши. В центральной части крыши каждой секции расположены воздушный главный выключатель (ГВ) и главный ввод, ведущий к первичной обмотке трансформатора.

На каждой секции установлен тяговый трансформатор ОНДЦЭ-10000/25 номинальной мощностью 7100 кВА. Трансформатор имеет обмотку высокого напряжения, три тяговых обмотки, каждая с двумя отпайками, обмотку собственных нужд (также с двумя отпайками - для нормального, повышенного и пониженного напряжения в контактной сети), обмотку возбуждения тяговых двигателей в режиме рекуперации . На секции стоят три тиристорных выпрямительно-инверторных преобразователя ВИП-4000. Каждый ВИП питается от собственной тяговой обмотки и предназначен для питания двух соединённых параллельно тяговых двигателей одной тележки. ВИП в режиме тяги выпрямляет переменный ток в постоянный с плавным регулированием напряжения путём зонно-фазового регулирования (открываются тиристоры, подключенные к разным отпайкам - так образуются зоны, а также изменяется угол открытия тиристоров, то есть фаза), а в режиме рекуперативного торможения работает как инвертор , ведомый сетью - преобразует постоянный ток в переменный с частотой 50 Гц.

На опытных электровозах были применены колёсно-моторные блоки , как и на электровозах ВЛ80 Т, ВЛ80 С, ВЛ80 Р (тяговый двигатель НБ-418К6 и унифицированная электровозная колёсная пара - для серий ВЛ10 , ВЛ11 , ВЛ80). Сделано это было для ускорения выпуска опытных электровозов, так как более мощные и экономичные тяговые двигатели НБ-514 ещё не были готовы. На серийных электровозах устанавливались тяговые двигатели НБ-514.

Стоит отметить, что у двигателя НБ-514 в четыре раза снижено аэродинамическое сопротивление вентиляционных каналов , что позволило вдвое сократить число вентиляторов на электровозе. В отличие от предыдущих электровозов, где ВУК или ВИП и сглаживающие реакторы охлаждаются отдельными вентиляторами, а тяговые двигатели отдельными, на ВЛ85 применена последовательная схема - сначала воздух от одного вентилятора охлаждает ВИП, а затем разделяется и охлаждает сглаживающий реактор и тяговые двигатели. Для охлаждения тягового трансформатора установлен отдельный вентилятор.

Также впервые на электровозе ВЛ85 установлен блок автоматического управления БАУ-2, позволяющий автоматически поддерживать ток тяговых двигателей и скорость в режимах тяги и рекуперации. Изменена и кабина машиниста - раздельные пульты машиниста и его помощника заменены на единый пульт, занимающий всю переднюю часть кабины.

31 32 33 34 35 36 37 38 39 ..

Электровоз BЛ85. Цепи пожарной сигнализации

Для предупреждения машиниста о пожаре на электровозе установлены термозащитные реле SK11-SK22 (см. рис. 3.20). При срабатывании любого из термозащитных реле отключается промежуточное реле KV76, которое своими контактами включает сигнальную лампу Н7 (см. рис. 3.21) на пульте машиниста и свисток НА (см. рис. 3.12).

Напряжение на катушку свистка подается по цепи: выключатели SF21, Блокирование ВВК (см. рис. 3.7), провод Э28, тумблер S75 Пожарная сигнализация ВКЛ, провод Н406, контакты KV76, провод Э75, панель диодов U75, провод Н95. Тумблер предназначен для обеспечения возможности отключения цепей пожарной сигнализации, панель диодов - для исключения подачи напряжения в цепь катушек вентиля защиты У1 и промежуточного реле KV1 панели питания U21 (см. рис. 3.1) от провода Н95, когда реле KV76 отключено, а провод Э28 обесточен со стороны выключателя Блокирование ВВК.

Для обеспечения возможности оперативной проверки пожарной сигнализации предусмотрен выключатель S76 Пожарная сигнализация - Проверка, с помощью которого размыкается цепь катушки реле KV76. Питание реле KV76 осуществляется через предохранитель F38 (см. рис. 3.6).

Электровоз BЛ85. Цепи сигнализации о состоянии оборудования

Сигнализацию (см. рис.3.21) осуществляют лампами H1-Н7,

Н11-HI5, Н18-Н28, Н30-Н33. Цвет колпачков ламп красный.

При включении выключателей Сигнализация SF34 (см. рис. 3.6) и блока выключателей S20 включается промежуточное реле КV58 ведущей секции, которое контактами с проводами Н034, Э80; Н525, Ж подает напряжение в цепи ламп, контактами с проводами Н034, Н400 - в цепи управления переключателями 5Л6. Контакты с проводами Н525, Ж предназначены для включения ламп только в ведущей секции,

контакты с проводами Н034, Н400 - для обеспечения возможности управления переключателями SA6 из ведущей секции, если не отключены тумблеры S71-S74 ведомых секций.

При включении тумблеров S7I-S74 включаются переключатели 5Л6, подсоединяя цепи сигнализации соответствующих секций к лампам Н11-Н15, Н18- Н28, Н30-Н33 ведущей секции. Панели диодов U71-U74 в цепи катушек переключателей предназначены для исключения подачи напряжения на провод Н400 ведомых секций от проводов Э71-Э74, обеспечивая возможность управления переключателями из ведущей секции, при условии, что не отключены тумблеры S71-S74 ведомых секций.

Для увеличения срока службы ламп в их цепи включены резисторы R97- R104. Развязка между собой цепей ламп обеспечивается блоками диодов U80- U82 (U81, U82 исключают подачу напряжения на лампы ведущей секции через лампы ведомых секций). Диод между выводами X1-15, Х2-15 блока диодов U80 исключает подачу напряжения на провод Н268 от провода Э105

и, следовательно, не допускает включения контактора КМ16 в той секции, в которой отключен тумблер S16 Компрессор по причине неисправности, например, электродвигателя компрессора. Напряжение на провод Э105 подается через контакты тумблера S16 и контактора КМ 16 другой секции при включении регулятора давления SP6.

С целью снижения тока разряда аккумуляторной батареи при отключенном ГВ цепи ламп Н20-Н24, Н26 отключаются контактами QF5 с проводами Н410, Н440.

Для облегчения поисков неисправности при КЗ в цепях сигнализации предусмотрены контакты переключателя SA5 с проводами Э80, Н410.

В случае отключения неисправной секции переключателем SA5 работоспособность сигнализации о состоянии оборудования исправной секции обеспечивается путем отключения переключателя SA6 неисправной секции (с помощью соответствующего тумблера из числа S71-S74). Работоспособность сигнализации о наличии сжатого воздуха в тормозных цилиндрах неисправной секции при этом сохраняется за счет контактов SA5, включенных параллельно контактам SA6 в цепи лампы ТЦ.

При загорании ламп Н7, Н11-Н15, И18 загорается соответствующая лампа из числа Н1-Н4, указывающая секцию, в которой появилась неисправность. При загорании ламп И19-Н28, Н30-НЗЗ секцию, из которой поступил сигнал, определяют путем поочередного отключения переключателей тумблерами S71-S74. Загорание ламп сигнализирует о следующем.



Похожие публикации